Министерство науки и высшего образования Российской Федерации

Томский государственный университет систем управления и радиоэлектроники

В. Д. Дмитриев Д. С. Брагин

Лабораторная работа №3 «Биполярные транзисторы»

Методические указания по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи»

Рецензент(ы):

Фамилия И. О., должность, ученая степень

Бахтин А.А., заведующий кафедрой телекоммуникационных систем национального исследовательского университета МИЭТ, канд. техн. наук

Дмитриев, Владимир Дмитриевич

Д 534 Лабораторная работа №3 «Биполярные транзисторы»: Методические указания по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 — «Радиотехника», 11.04.02 — «Инфокоммуникационные технологии и системы связи» / В. Д. Дмитриев, Д. С. Брагин. — Томск: Томск. Гос. ун-т систем упр. и радиоэлектроники, 2020. — 16 с.

Представлены методические указания по выполнению лабораторной работы №3 «Биполярные транзисторы» по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 — «Радиотехника», 11.04.02 — «Инфокоммуникационные технологии и системы связи».

Одобрен	о на з	аседани	и каф.	Телеком	муникаций	и основ	радиоте	хники,
протокол №	_3	от _2	6.11.20	20г				

УДК 621.382.3 ББК 32.84

[©] Дмитриев В. Д., Брагин Д. С., 2020

[©] Томск. Гос. Ун-т систем упр. и радиоэлектроники, 2020

Оглавление

Введение	4
1 Предварительные расчеты	5
1.1 Перевод S-параметров в классические Y- и H-параметры	5
1.2 Определение входного и выходного сопротивления	5
1.3 Оценка усилительных свойств четырехполюсника на фиксированно	рй
частоте	6
1.4 Определение элементов эквивалентной модели биполярного транзистора	ι7
2 Пример расчета	9
3 Задание на лабораторную работу 1	. 1
3.1 Настройка проекта и создание схемы	. 1
3.2 Моделирование основных характеристик биполярного транзистора 1	4
Приложение А	6

Введение

Целью работы является расчет основных параметров СВЧ четырехполюсников, определение элементов эквивалентной модели биполярных транзисторов и моделирование характеристик биполярного транзистора в системе автоматизированного проектирования NI AWR.

1 Предварительные расчеты

1.1 Перевод S-параметров в классические Y- и H-параметры

Перевод выполняется по следующим формулам (1.1 – 1.8)

$$Y_{11} = \frac{1}{\rho} \cdot \left[\frac{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(1.1)

$$Y_{12} = \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{12}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
 (1.2)

$$Y_{21} = \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
 (1.3)

$$Y_{22} = \frac{1}{\rho} \cdot \left[\frac{(1 - S_{22})(1 + S_{11}) + S_{12} \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(1.4)

$$H_{11} = \rho \cdot \left[\frac{(1+S_{11})(1+S_{22}) + S_{12} \cdot S_{21}}{(1-S_{11})(1+S_{22}) + S_{12} \cdot S_{21}} \right]$$
(1.5)

$$\mathbf{H}_{12} = \left[\frac{2 \cdot \mathbf{S}_{12}}{(1 - \mathbf{S}_{11})(1 + \mathbf{S}_{22}) + \mathbf{S}_{12} \cdot \mathbf{S}_{21}} \right] \tag{1.6}$$

$$\mathbf{H}_{21} = \left[\frac{-2 \cdot \mathbf{S}_{21}}{(1 - \mathbf{S}_{11})(1 + \mathbf{S}_{22}) + \mathbf{S}_{12} \cdot \mathbf{S}_{21}} \right] \tag{1.7}$$

$$H_{22} = \frac{1}{\rho} \cdot \left[\frac{(1 - S_{11})(1 - S_{22}) - S_{12} \cdot S_{21}}{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}} \right]$$
(1.8)

где $\rho = 50 \text{ Ом} - \text{волновое сопротивление}.$

1.2 Определение входного и выходного сопротивления

Последовательное представление входного сопротивления определяется на основе коэффициента отражения по входу S_{11} :

$$Re(Z_{BX}) = \rho \cdot \frac{1 - |S_{11}|^2}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(1.9)

$$Im(Z_{BX}) = \rho \cdot \frac{2 \cdot |S_{11}| \cdot \sin \varphi_{11}}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(1.10)

Реальная часть входного сопротивления равняется резистивному сопротивлению, а элементы мнимой составляющей определяются через частоту, на которой были определены S-параметры. Емкость соответствует отрицательному значению мнимой части, а индуктивность — положительному.

$$C_{\text{\tiny BX}} = \frac{1}{\omega \cdot \text{Im}(Z_{\text{\tiny BX}})}, \quad L_{\text{\tiny BX}} = \frac{\text{Im}(Z_{\text{\tiny BX}})}{\omega}$$
(1.11)

При параллельном представлении входного сопротивления необходимо определить комплексную проводимость $Y_{\rm BX}=1/Z_{\rm BX}$, при этом реальная и мнимая составляющие будут равны:

$$Re(Y_{BX}) = \frac{1}{\rho} \cdot \frac{1 - |S_{11}|^2}{1 + 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(1.12)

$$Im(Y_{BX}) = \frac{1}{\rho} \cdot \frac{2 \cdot |S_{11}| \cdot \sin \varphi_{11}}{1 + 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(1.13)

Сопротивление будет равно: $R = 1/Re(Y_{Bx})$, ёмкость $C = Im(Y_{Bx})/\omega$, индуктивность $L = 1/(\omega \cdot Im(Y_{Bx}))$. Емкость соответствует положительному значению мнимой части, а индуктивность — отрицательному.

Подобным образом определяются и выходные сопротивления четырехполюсника, при этом коэффициент отражения по входу S_{11} заменяется на коэффициент отражения по выходу S_{22} .

$$Re(Z_{_{BX}}) = \rho \cdot \frac{1 - |S_{22}|^2}{1 - 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2}$$
(1.14)

$$Im(Z_{BX}) = \rho \cdot \frac{2 \cdot |S_{22}| \cdot \sin \varphi_{11}}{1 - 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2}$$
(1.15)

$$Re(Y_{_{BX}}) = \frac{1}{\rho} \cdot \frac{1 - |S_{22}|^2}{1 + 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2}$$
(1.16)

$$Im(Y_{BX}) = \frac{1}{\rho} \cdot \frac{2 \cdot |S_{22}| \cdot \sin \varphi_{11}}{1 + 2 \cdot |S_{22}| \cdot \cos \varphi_{11} + |S_{22}|^2}$$
(1.17)

1.3 Оценка усилительных свойств четырехполюсника на фиксированной частоте

В СВЧ-диапазоне усилительные возможности активных приборов принято характеризовать коэффициентом передачи по мощности, который в общем случае определяют, как

$$K_{p} = P_{\text{BMX}} / P_{\text{BX}} \tag{1.18}$$

где: $P_{\text{вых}}-$ мощность на выходе четырехполюсника,

 $P_{\scriptscriptstyle BX}-$ мощность на входе четырехполюсника.

Обычно, коэффициент передачи по мощности принято определять в децибелах (дБ):

$$K_{p}(AB) = 10 \cdot \lg(K_{p}) \tag{1.19}$$

Однонаправленный коэффициент передачи транзистора, который можно реализовать с помощью согласующих цепей, определяется по формуле

$$K_{pmax} = \frac{|S_{21}|^2}{(1-|S_{11}|^2)\cdot(1-|S_{22}|^2)}$$
(1.20)

В случае идеального согласования ($S_{11} = S_{22} = 0$) коэффициент передачи определяется как $K_{p \; max} = |S_{21}|^2$.

Наряду с отмеченным выше коэффициентом передачи используется однонаправленный коэффициент передачи с нейтрализацией обратной связи $K_{p \max \max}$, который является максимально возможным при двухстороннем комплексно-сопряженным согласовании транзистора. Данный коэффициент связан с коэффициентом устойчивости K_{v} .

$$K_{y} = \frac{1 + |\Delta S|^{2} - |S_{11}|^{2} - |S_{22}|^{2}}{2 \cdot |S_{12}| \cdot |S_{21}|}$$
(1.21)

где $\Delta S = S_{11} \cdot S_{22} - S_{12} \cdot S_{21} -$ определитель матрицы [S].

При $K_y > 1$ транзистор считается устойчивым, т.е. не будет самовозбуждаться. При этом $K_{p \text{ max max}}$ будет равен:

$$K_{\text{pmax max}} = \frac{\left|S_{21} / S_{12} - 1\right|^{2}}{2 \cdot K_{y} \cdot \left|S_{21} / S_{12}\right| - 2 \cdot \text{Re}(S_{21} / S_{12})}$$
(1.22)

Примечание: при расчете варианта, если коэффициент устойчивости $(K_y > 1)$, то расчет $K_{p \max \max}$ производить не нужно.

1.4 Определение элементов эквивалентной модели биполярного транзистора

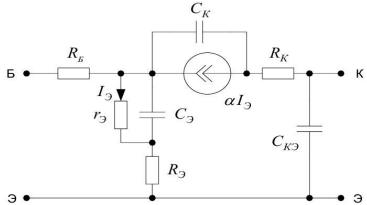


Рисунок 1.1 – Эквивалентна схема биполярного транзистора

На рисунке 1.1 указаны следующие элементы эквивалентной схемы:

 $R_{\text{Б}}$ – сопротивление базы;

 r_{\Im} — дифференциальное сопротивление эмиттера;

 $R_{\mathrm{\Im}}$ – контактное сопротивление эмиттера;

 C_K- ёмкость перехода коллектор — база;

 $R_{\mbox{\scriptsize K}}$ – контактное сопротивление коллектора;

 $C_{K\Im}$ – ёмкость коллектор –эмиттер;

 α – коэффициент усиления по току в схеме с общей базой.

Дифференциальное сопротивление определяется известным соотношением через ток эмиттера I_{\Im} :

$$r_{s} = \varphi_{m} / I_{s} \tag{1.23}$$

где ϕ_m =26 мВ – температурный потенциал.

Для определения других параметров требуется нахождение предельной частоты по схеме с ОЭ $f_T(\omega_T=2\pi f_T)$ и $f_\alpha(\omega_\alpha=2\pi f_\alpha)$ — предельная частота для схемы с ОБ. Частота f_T определяется через модуль |H21| в виде:

$$f_{T} = |H_{21}| \cdot f \tag{1.24}$$

где f – частота, на которой определяется H21 (частота варианта).

Предельная частота f_{α} связана с f_{T} простым соотношением

$$f_{\alpha} = \sqrt{2} \cdot f_{T} \tag{1.25}$$

Элементы эквивалентной схемы (рис. 1.1) находятся по следующим выражениям:

$$C_{K} = \frac{1 - 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^{2}}{Z_{0} \cdot (1 - |S_{22}|) \cdot \omega_{T}}$$
(1.26)

где $Z_0 = 50$ Ом.

$$R_9 + r_9 = 1/\omega_T'$$
 (1.27)

где
$$\begin{aligned} \omega'_{\mathrm{T}} &= \frac{\omega_{\mathrm{T}} \cdot \alpha}{\alpha + \omega_{\mathrm{T}} \cdot C_{\mathrm{K}} \cdot Z_{0}}, \\ C_{0} &= \frac{1}{\omega \cdot (R_{0} + Z_{0}) \cdot \mathrm{tg}(\phi_{21} - 90)}, \\ R_{0} &= \frac{2 \cdot Z_{0} \cdot \omega'_{\mathrm{T}} - Z_{0} \cdot \omega \cdot |S_{21}|}{\omega \cdot |S_{21}|}. \end{aligned}$$

Коэффициент усиления по току α для схемы с ОБ определяется через H_{21} :

$$\alpha = |H_{21}|/(1+|H_{21}|) \tag{1.28}$$

$$R_{\rm b} = \frac{Z_0 \cdot (1 - |S_{11}|)}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
 (1.29)

$$R_{K} = m \cdot R_{B} \tag{1.30}$$

где m = 0.35...0.5.

$$\tau = R_{\rm b} \cdot C_{\rm K} \tag{1.31}$$

$$C_{3} = \frac{1}{\omega_{\alpha} \cdot (R_{3} + r_{3})}$$
 (1.32)

$$C_{K9} = \frac{1}{\omega} Im \left[\frac{1}{Z_0} \cdot \frac{(1 + S_{11}) \cdot (1 - S_{22}) + S_{12} \cdot S_{21}}{(1 + S_{11}) \cdot (1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(1.33)

2 Пример расчета

Исходные данные:

$$f = 500 M\Gamma$$
ц;

$$|S_{11}| = 0.46$$
, $\varphi_{11} = -137$;

$$|S_{12}| = 0.025, \ \phi_{12} = 56;$$

$$|S_{21}| = 13,2, \quad \varphi_{21} = 100;$$

$$|S_{22}| = 0.57$$
, $\phi_{22} = -26$.

1. Преобразование S-параметров в алгебраическую форму.

$$S_{11} = |S_{11}| \cdot (\cos(\varphi_{11}) + j \cdot \sin(\varphi_{11})) =$$

$$= 0.46 \cdot (\cos(-137) + j \cdot \sin(-137)) = -0.336 - j \cdot 0.314$$

$$S_{12} = 0.013 + j \cdot 0.021$$

$$S_{21} = -2.292 + j \cdot 13$$

$$S_{22} = 0.512 - j \cdot 0.25$$

2. Расчет Y- и H-параметров по формулам 2.1 - 2.8.

$$\begin{split} Y_{11} &= \frac{1}{\rho} \cdot \left[\frac{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right] = 18.938 \cdot 10^{-3} + j \cdot 16.437 \cdot 10^{-3} \\ Y_{12} &= \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{12}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right] = -20.836 \cdot 10^{-6} - j \cdot 689.029 \cdot 10^{-6} \\ Y_{21} &= \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right] = 244.808 \cdot 10^{-3} - j \cdot 269.343 \cdot 10^{-3} \\ Y_{22} &= \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right] = 89.778 \cdot 10^{-6} + j \cdot 2.454 \cdot 10^{-3} \\ H_{11} &= \rho \cdot \left[\frac{(1 + S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}}{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}} \right] = 14.847 - j \cdot 16.34 \\ H_{12} &= \left[\frac{2 \cdot S_{12}}{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}} \right] = 18.638^{-3} + j \cdot 20.207 \cdot 10^{-3} \\ H_{21} &= \left[\frac{-2 \cdot S_{21}}{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}} \right] = 332.475 \cdot 10^{-3} - j \cdot 14.511 \\ H_{22} &= \frac{1}{\rho} \cdot \left[\frac{(1 - S_{11})(1 - S_{22}) - S_{12} \cdot S_{21}}{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}} \right] = 10.095 \cdot 10^{-3} + j \cdot 2.381 \cdot 10^{-3} \end{split}$$

3. Расчет входного сопротивления

В последовательном представлении

$$Re(Z_{_{BX}}) = \rho \cdot \frac{1 - |S_{_{11}}|^2}{1 - 2 \cdot |S_{_{11}}| \cdot \cos \varphi_{_{11}} + |S_{_{11}}|^2} = 20.919$$

$$Im(Z_{_{BX}}) = \rho \cdot \frac{2 \cdot |S_{_{11}}| \cdot \sin \varphi_{_{11}}}{1 - 2 \cdot |S_{_{11}}| \cdot \cos \varphi_{_{11}} + |S_{_{11}}|^2} = -16.648$$

$$R_{_{BX}} = Re(Z_{_{BX}}) = 20.919, \qquad C_{_{BX}} = \frac{1}{\omega \cdot Im(Z_{_{BX}})} = 19.12 \, \pi \Phi$$

В параллельном представлении:

$$\begin{split} Re(Y_{_{BX}}) = & \frac{1}{\rho} \cdot \frac{1 - \left|S_{_{11}}\right|^2}{1 + 2 \cdot \left|S_{_{11}}\right| \cdot \cos \phi_{_{11}} + \left|S_{_{11}}\right|^2} = 29.267 \cdot 10^{-3} \\ Im(Y_{_{BX}}) = & \frac{1}{\rho} \cdot \frac{2 \cdot \left|S_{_{11}}\right| \cdot \sin \phi_{_{11}}}{1 + 2 \cdot \left|S_{_{11}}\right| \cdot \cos \phi_{_{11}} + \left|S_{_{11}}\right|^2} = -23.292 \cdot 10^{-3} \\ R_{_{BЫX,\Pi APAJJJ}} = & 1 / Re(Y_{_{BX}}) = 34.168, \qquad C_{_{BЫX,\Pi APAJJJ}} = \frac{Im(Y_{_{BX}})}{0} = 7.414 \, \pi \Phi \end{split}$$

4. Расчет выходного сопротивления

В последовательном представлении:

$$\begin{split} \text{Re}(Z_{_{\text{BMX}}}) &= \rho \cdot \frac{1 - \left|S_{22}\right|^2}{1 - 2 \cdot \left|S_{22}\right| \cdot \cos \varphi_{22} + \left|S_{22}\right|^2} = 112.414 \\ \text{Im}(Z_{_{\text{BMX}}}) &= \rho \cdot \frac{2 \cdot \left|S_{22}\right| \cdot \sin \varphi_{11}}{1 - 2 \cdot \left|S_{22}\right| \cdot \cos \varphi_{22} + \left|S_{22}\right|^2} = -83.214 \\ \text{R}_{_{\text{BMX}}} &= \text{Re}(Z_{_{\text{BMX}}}) = 112.414, \quad C_{_{\text{BMX}}} = \frac{1}{\omega \cdot \text{Im}(Z_{_{\text{MMX}}})} = 3.825 \, \text{II} \Phi \end{split}$$

В параллельном представлении:

$$\begin{split} \text{Re}(\textbf{Y}_{\text{вых}}) &= \frac{1}{\rho} \cdot \frac{1 - \left|\textbf{S}_{22}\right|^2}{1 + 2 \cdot \left|\textbf{S}_{22}\right| \cdot \cos \phi_{22} + \left|\textbf{S}_{22}\right|^2} = 5.747 \cdot 10^{-3} \\ \text{Im}(\textbf{Y}_{\text{вых}}) &= \frac{1}{\rho} \cdot \frac{2 \cdot \left|\textbf{S}_{22}\right| \cdot \sin \phi_{22}}{1 + 2 \cdot \left|\textbf{S}_{22}\right| \cdot \cos \phi_{22} + \left|\textbf{S}_{22}\right|^2} = -4.254 \cdot 10^{-3} \\ \textbf{R}_{\text{вых.паралл}} &= 1 / \, \text{Re}(\textbf{Y}_{\text{вх}}) = 174.013, \qquad \textbf{C}_{\text{вых.паралл}} = \frac{\text{Im}(\textbf{Y}_{\text{вых}})}{\phi} = 7.414 \, \text{П} \Phi \end{split}$$

5. Расчет коэффициента передачи

Без согласующих цепей, в тракте 50 Ом: $K_{p \; \text{max}} = \left|S_{21}\right|^2 = 174.24$

$$K_{p \text{ max}} = |S_{21}|^2 = 174.24$$

С учетом согласующих цепей:

$$\mathbf{K}_{\text{pmax}} = \frac{|\mathbf{S}_{21}|^2}{(1 - |\mathbf{S}_{11}|^2) \cdot (1 - |\mathbf{S}_{22}|^2)} = 327.366$$
$$10 \cdot \log_{10}(\mathbf{K}_{\text{pmax}}) = 25.15$$

6. Расчет коэффициента устойчивости

$$\Delta S = S_{11} \cdot S_{22} - S_{12} \cdot S_{21} = 0.051 - j \cdot 0.211$$

$$K_{y} = \frac{1 + |\Delta S|^{2} - |S_{11}|^{2} - |S_{22}|^{2}}{2 \cdot |S_{12}| \cdot |S_{21}|} = 0.774$$

7. Определение элементов эквивалентной модели

$$\begin{split} \mathbf{r}_{_{\! 9}} = & \, \phi_{_{\! 1\! M}} \, / \, \mathbf{I}_{_{\! 9}} = 1.3 \quad \mathbf{f}_{_{\! T}} = \! | \, \mathbf{H}_{21} \, | \cdot \mathbf{f} = 7.257 \, \Gamma \Gamma \mathbf{H} \quad \mathbf{f}_{_{\! \alpha}} = \sqrt{2} \cdot \mathbf{f}_{_{\! T}} = 10.263 \, \Gamma \Gamma \mathbf{H} \\ \mathbf{C}_{_{\! K}} = & \, \frac{1 - 2 \cdot | \, \mathbf{S}_{22} \, | \cdot \cos \phi_{22} + | \, \mathbf{S}_{22} \, |^2}{Z_0 \cdot (1 - | \, \mathbf{S}_{22} \, |) \cdot \omega_{_{\! T}}} = 0.306 \, \Pi \Phi \\ \alpha = \! | \, \mathbf{H}_{21} \, | \, / (1 + | \, \mathbf{H}_{21} \, |) = 0.935 \end{split}$$

$$\begin{split} \omega'_{T} &= \frac{\omega_{T} \cdot \alpha}{\alpha + \omega_{T} \cdot C_{K} \cdot Z_{0}} = 26.11 \cdot 10^{9} \\ R_{0} &= \frac{2 \cdot Z_{0} \cdot \omega'_{T} - Z_{0} \cdot \omega \cdot |S_{21}|}{\omega \cdot |S_{21}|} = 12.962 \\ C_{0} &= \frac{1}{\omega \cdot (R_{0} + Z_{0}) \cdot tg(\phi_{21} - 90)} = 28.672 \, \text{pd} \\ R_{3} &= 1/\omega'_{T} - r_{3} = 0.036 \, \text{Om} \\ R_{5} &= \frac{Z_{0} \cdot (1 - |S_{11}|)}{1 - 2 \cdot |S_{11}| \cdot \cos \phi_{11} + |S_{11}|^{2}} = 14.328 \, \text{Om} \\ R_{K} &= m \cdot R_{5} = 4.298 \, \text{Om} \\ \tau &= R_{5} \cdot C_{K} = 4.388 \, \text{fic} \\ C_{3} &= \frac{1}{\omega} \text{Im} \left[\frac{1}{Z_{0}} \cdot \frac{(1 + S_{11}) \cdot (1 - S_{22}) + S_{12} \cdot S_{21}}{(1 + S_{11}) \cdot (1 + S_{22}) - S_{12} \cdot S_{21}} \right] = 0.417 \, \text{pd} \end{split}$$

3 Задание на лабораторную работу

В ходе выполнения лабораторной работы необходимо выполнить моделирование основных параметров биполярного транзистора, элементы эквивалентной схемы которого были определены во время выполнения расчетного задания.

3.1 Настройка проекта и создание схемы

Установите начальную и конечную частоту моделирования в настройках проекта в соответствии с рисунком 3.1.

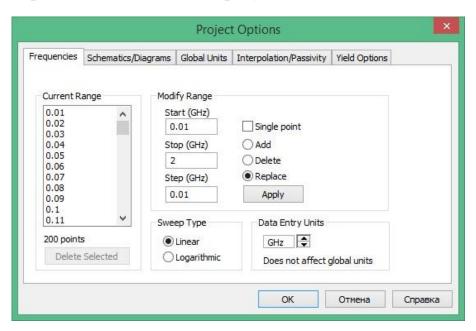


Рисунок 3.1 – Настройки частот моделирования

Для построения схемы необходимо использовать линейную модель биполярного транзистора Elements->Circuit Elements->Linear Devices->BIP.

Первый порт подключается к базе транзистора (1), второй к коллектору (2), вывод эмиттера соединяется с общим проводом (3). Между коллектором и эмиттером, параллельно транзистору, подключается конденсатор. На рисунке 3.2 приведена схема подключения модели транзистора, в таблице 3.1 приведены соответствия между рассчитанными параметрами и параметрами модели транзистора, на рисунке 3.2 приведен пример определения параметров модели транзистора.

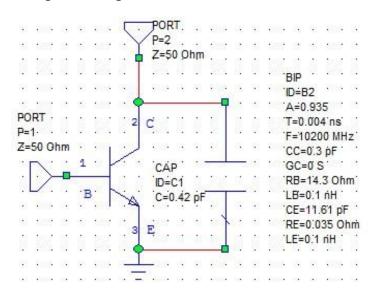


Рисунок 3.2 – Схема подключения модели транзистора

Таблица 3.1 – Таблица соответствия

	T		1
Расчетный	Параметр модели	Расчетный	Параметр модели
параметр		Параметр	
R_{\ni}	RE	$C_{\mathfrak{I}}$	CE
f_{α}	F	$C_{K\Im}$	Паралл. ёмк.
C_{K}	CC	T	T
α	A	Всегда равен 0	GC
R _B	RB	0.1 нГн	LB, LE

Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Step	Description	
N ID	B2								Element ID	
BA	0.935					0.467999995	0.980000019		Magnitude of DC current gain (alp	
BT	0.004	ns							Current gain time delay	
BF	10200	MHz				0	14514		-3dB frequency for current gain	
CC.	0.3	pF							Collector capacitance	
₿ GC	0	S				0.00100000005	1.49600005		Collector conductance	
RB	14.3	Ohm							Base resistance	
B LB	0.1	nΗ							Base inductance	
B CE	11.61	pF				0.100000001	23,2000008	0.100000001	Emitter capacitance	
R RE	0.035	Ohm				0.0175000001	100	0.0999825001	Emitter resistance	
R LE	0.1	nH							Emitter inductance	

Рисунок 3.3 – Пример определения параметров модели

3.2 Моделирование основных характеристик биполярного транзистора

Необходимо выполнить построение следующих графиков: S-параметры транзистора $(S_{11},\ S_{12},\ S_{21},\ S_{22})$ в линейном формате и максимальный коэффициент передачи по мощности $K_{p\ max}$.

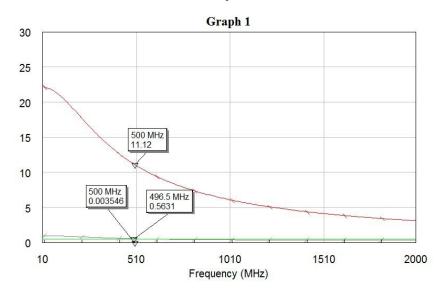


Рисунок 3.4 – Пример S-параметров биполярного транзистора

Для построения графика максимального коэффициента передачи по мощности необходимо при добавлении измерения на график выбрать Measurment Type->Linear->Gain и Measurment->Gmax, при добавлении измерения необходимо, также, выбрать отображение данных в дБ. На рисунке 3.5 приведен пример параметров выбора измерений, на рисунке 3.6 приведен пример графика максимального коэффициента передачи по мощности

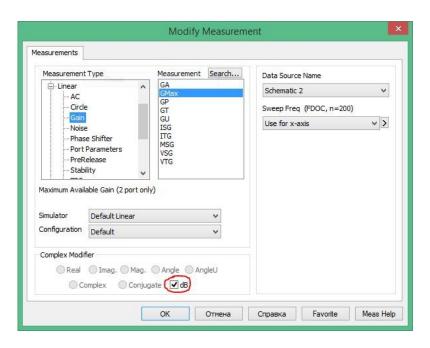


Рисунок 3.5 – Вывод графика максимального коэффициента передачи по мощности

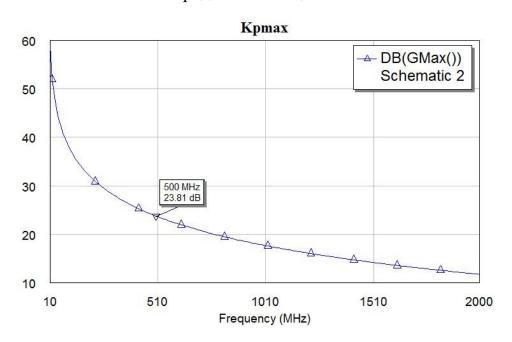


Рисунок 3.6 – Пример графика максимального коэффициента передачи по мощности

Приложение A
Таблица А.1 – Варианты расчетных заданий

No	$ S_{11} $	(0	$ S_{12} $	(0.10	$ S_{21} $	(00)	$ S_{22} $	(0.55	f,	I ₃ ,
215	SIII	Ф11гр	D 12	Ф12гр	521	Ф21гр	1322	$\phi_{22\Gamma p}$	МΓц	мА
1	0.85	-30	0.013	64	23.2	158	0.93	-11	100	10
2	0.58	-112	0.035	44	12.2	109	0.62	-30	500	10
3	0.49	-156	0.044	43	6.7	85	0.5	-33	1000	10
4	0.49	-178	0.056	47	4.6	71	0.46	-36	1500	10
5	0.5	-160	0.068	47	3.4	59	0.45	-41	2000	10
6	0.65	-46	0.01	59	33	150	0.89	-15	100	20
7	0.46	-137	0.025	56	13.2	100	0.57	-26	500	20
8	0.43	-175	0.038	58	6.8	80	0.52	-29	1000	20
9	0.44	-63	0.048	61	4.6	67	0.51	-32	1500	20
10	0.47	-148	0.062	60	3.5	56	0.5	-37	2000	20