Министерство науки и высшего образования Российской Федерации

Томский государственный университет систем управления и радиоэлектроники

В. Д. Дмитриев Д. С. Брагин

Лабораторная работа №4 «Полевые транзисторы»

Методические указания по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи»

Томск 2020

Рецензент(ы):

Фамилия И.О., должность, ученая степень

Бахтин А.А., заведующий кафедрой телекоммуникационных систем национального исследовательского университета МИЭТ, канд. техн. наук

Дмитриев, Владимир Дмитриевич

Д 534 Лабораторная работа №4 «Полевые транзисторы»: Методические указания по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи» / В. Д. Дмитриев, Д. С. Брагин. – Томск: Томск. Гос. ун-т систем упр. и радиоэлектроники, 2020. – 17 с.

Представлены методические указания по выполнению лабораторной работы №4 «Полевые транзисторы» по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи».

Одобрено на заседании каф. Телекоммуникаций и основ радиотехники, протокол № 3 от 26.11. 2020 г.____

УДК 621.382.3 ББК 32.84

© Дмитриев В. Д., Брагин Д. С., 2020 © Томск. Гос. Ун-т систем упр. и радиоэлектроники, 2020

Оглавление

Введение

Целью работы является расчет основных параметров СВЧ четырехполюсников, определение элементов эквивалентной модели полевого транзистора и моделирование характеристик полевого транзистора в системе автоматизированного проектирования NI AWRDE.

1 Теоретические сведения

Частотные потенциальные возможности применения СВЧ транзисторов оцениваются граничной частотой f_T и максимальной частотой генерации f_{MAX} . Граничная частота f_T определяется как частота, на которой модуль коэффициента передачи по току $|h_{21}|$ равен единице. Максимальная частота генерации f_{MAX} определяется как наибольшая, на которой способен генерировать транзистор в схеме автогенератора. При этом, f_{MAX} находится из условия равенства входной и выходной мощности транзистора и обычно превышает частоту f_T . Для определения f_T и f_{MAX} используют схему с общим эмиттером (ОЭ), для биполярных транзисторов и с общим истоком (ОИ) для полевых. Коэффициент передачи по току $|h_{21}|$ определяется как параметры четырёхполюсников (рисунок 1.1).

Рисунок 1.1 - Схема представления биполярного транзистора по схеме ОЭ (a) и полевого транзистора на схеме с ОИ (б).

Напряжение и токи связаны соотношениями:

$$\begin{cases} U_1 = h_{11}I_1 + h_{12}U_2 \\ I_2 = h_{21}I_1 + h_{22}U_2 \end{cases}$$
(1.1)

Коэффициент передачи по току l_{21} , равный отношению выходного тока l_2 к входному l_1 , определяется при условии короткого замыкания на выходе $(U_2 = 0)$:

$$h_{21} = I_2 / I_1 |_{K3 \text{ HA BbIX}}$$
(1.2)

Частотная зависимость $|h_{21}|$ для схем с ОЭ и ОИ, имеет вид, представленной на рисунке 1.2.

Рисунок - 1.2 частотная зависимость |*h*₂₁| для транзисторов по схеме ОЭ и ОИ.

В низкочастотной области определяются предельная частота f_{h21} , на которой коэффициент h_{21} уменьшается до уровня 0,707(-3 дБ) от величины $|h_{210}|$ на постоянном токе. Предельная частота f_{h21} для биполярных транзисторов обозначается как f_{β} , так как коэффициент усиления на постоянном токе для схемы с ОЭ $\beta = I_{K0} / I_{50}$ (отношение тока коллектора к току базы) на частоте f_{h21} также уменьшается на 3дБ.

Предельная частота $f_{h_{21}}$ обычно используется при расчётах низкочастотных схем. СВЧ транзисторы чаще характеризуют частотой f_{T} , на которой $|h_{21}|$ равен единице.

Экспериментальное определение непосредственно $|h_{21}|$ для СВЧ транзисторов практически невозможно, так как режим короткого замыкания делает их потенциально неустойчивыми и приводит к генерации. Поэтому для определения частотной зависимости $|h_{21}|$ используют косвенный метод через [S]-параметры, которые измеряют в нагруженном по входу и выходу тракте (рис.1.1) при этом, коэффициент $|h_{21}|$ определяется:

$$|\mathbf{h}_{21}| = \left| -\mathbf{S}_{21} / \left[(1 - \mathbf{S}_{11}) (1 + \mathbf{S}_{22}) + \mathbf{S}_{12} \mathbf{S}_{21} \right]$$
(1.3)

Таким образом, производя измерения S-параметров транзистора в широкой полосе частот на основе соотношения (1.3) можно построить частотную зависимость $|h_{21}|$ с целью определения f_{h21} и f_{T} . Однако следует отметить, что на высоких частотах возрастает погрешность измерения S-параметров, поэтому для определения f_{T} и f_{MAX} ограничиваются измерениями S-параметров до нескольких ГГц.

Известно, что начиная с частоты, превышающей в несколько (3-5) раз частоту $f_{h_{21}}$ уменьшается со скоростью в 6 дБ на октаву(октава соответствует соотношению частот двум), что позволяет определить ее методом экстраполяции. На основе этого, практическое определение граничной частоты сводится к определению $|h_{21}|$ на частоты выше 5 $f_{h_{21}}$ и она рассчитывается по формуле:

$$\mathbf{f}_{\mathrm{T}} = \left| \mathbf{h}_{21} \right| \cdot \mathbf{f}_{\mathrm{M3M}} \tag{1.4}$$

Максимальная частота генерации f_{MAX} связана с нахождением максимального однонаправленного коэффициента усиления по мощности $K_{P\max}$. На максимальной частоте генерации f_{MAX} коэффициент $K_{P\max}$ равен единице. Известно, что на частоте выше 0,1f_T коэффициент $K_{P\max}$ также уменьшается со скоростью в 6 дБ на октаву, поэтому для нахождения максимальной частоте, которая выше 0,1f_T . При этом, частота f_{MAX} ...определяется простым соотношением:

$$\mathbf{f}_{\max} = \left| \mathbf{K}_{\mathrm{Pmax}} \right| \mathbf{f}_{\mathrm{H3M}} \tag{1.5}$$

Таким образом, определения частотных параметров СВЧ транзисторов производиться в следующем порядке:

1. Измеряются S-параметры биполярного транзистора по схеме с ОЭ, полевого по схеме ОИ в низкочастотной области (от единицы до нескольких сотен мегагерц). Рассчитывается по формуле (1.3) $|h_{21}|$ и строится график его зависимости от частоты. Определяется предельная частота $f_{h_{21}}$, соответствующая значению $|h_{21}|$ равного 0,707 от $|h_{210}|$ -низкочастотного значения (на частоте 1-10 МГц).

2. После определения частоты $f_{h_{21}}$ измеряются S-параметры транзисторов на частоте, превышающей $5f_{h_{21}}$, и рассчитывается граничная частота f_T в соответствии с выражением (1.4).

3. С учетом найденного значения f_T производиться измерение Sпараметров транзисторов на частоте равной 0,1f_T , на которой определяется максимальной однонаправленный коэффициент усиления по мощности $K_{P_{\text{max} \text{max}}}$.

2 Расчетное задание

В ходе выполнения расчетного задания необходимо выполнить расчет основных параметров полевого транзистора, как четырехполюсника, в соответствии с вариантами, приведенными в приложении А. Пример расчета приведен в пункте 3.

2.1 Перевод S-параметров в классические Y-параметры

Перевод выполняется по следующим формулам (2.1 – 2.4)

$$Y_{11} = \frac{1}{\rho} \cdot \left[\frac{(1 - S_{11})(1 + S_{22}) + S_{12} \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(2.1)

$$Y_{12} = \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{12}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(2.2)

$$Y_{21} = \frac{1}{\rho} \cdot \left[\frac{-2 \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(2.3)

$$Y_{21} = \frac{1}{\rho} \cdot \left[\frac{(1 - S_{22})(1 + S_{11}) + S_{12} \cdot S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12} \cdot S_{21}} \right]$$
(2.4)

где $\rho = 50 \text{ Ом} - волновое сопротивление.}$

2.2 Определение входного и выходного сопротивления

Последовательное представление входного сопротивления определяется на основе коэффициента отражения по входу S₁₁ по выражениям 2.5, 2.6

$$Re(Z_{BX}) = \rho \cdot \frac{1 - |S_{11}|^2}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(2.5)

$$Im(Z_{BX}) = \rho \cdot \frac{2 \cdot |S_{11}| \cdot \sin \varphi_{11}}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(2.6)

Реальная часть входного сопротивления равняется резистивному сопротивлению, а элементы мнимой составляющей определяются через частоту, на которой были определены S-параметры. Емкость соответствует отрицательному значению мнимой части, а индуктивность – положительному.

$$C_{_{BX}} = \frac{1}{\omega \cdot Im(Z_{_{BX}})}, \quad L_{_{BX}} = \frac{Im(Z_{_{BX}})}{\omega}$$
(2.7)

При параллельном представлении входного сопротивления необходимо определить комплексную проводимость Y_{вх} = 1/Z_{вх}, при этом реальная и мнимая составляющие будут равны:

$$\operatorname{Re}(Y_{_{BX}}) = \frac{1}{\rho} \cdot \frac{1 - |S_{11}|^2}{1 + 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2}$$
(2.8)

$$Im(Y_{BX}) = \frac{1}{\rho} \cdot \frac{2 \cdot |S_{11}| \cdot \sin \phi_{11}}{1 + 2 \cdot |S_{11}| \cdot \cos \phi_{11} + |S_{11}|^2}$$
(2.9)

Сопротивление будет равно: $R = 1/Re(Y_{BX})$, ёмкость $C = Im(Y_{BX})/\omega$, индуктивность $L = 1/(\omega \cdot Im(Y_{BX}))$. Емкость соответствует положительному значению мнимой части, а индуктивность – отрицательному.

Подобным образом определяются и выходные сопротивления четырехполюсника, при этом коэффициент отражения по входу S₁₁ заменяется на коэффициент отражения по выходу S₂₂.

$$\operatorname{Re}(Z_{\text{Bbix}}) = \rho \cdot \frac{1 - |S_{22}|^2}{1 - 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2} \qquad (2.10)$$

$$Im(Z_{Bbix}) = \rho \cdot \frac{2 \cdot |S_{22}| \cdot \sin \phi_{22}}{1 - 2 \cdot |S_{22}| \cdot \cos \phi_{22} + |S_{22}|^2}$$
(2.11)

$$\operatorname{Re}(\mathbf{Y}_{_{\text{Bbix}}}) = \frac{1}{\rho} \cdot \frac{1 - |\mathbf{S}_{22}|^2}{1 + 2 \cdot |\mathbf{S}_{22}| \cdot \cos \varphi_{22} + |\mathbf{S}_{22}|^2} \qquad (2.12)$$

$$Im(Y_{BBIX}) = \frac{1}{\rho} \cdot \frac{2 \cdot |S_{22}| \cdot \sin \varphi_{22}}{1 + 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2}$$
(2.13)

2.3 Оценка усилительных свойств четырехполюсника на фиксированной частоте

В СВЧ-диапазоне усилительные возможности активных приборов принято характеризовать коэффициентом передачи по мощности, который в общем случае определяют по формуле 2.14.

$$K_{p} = P_{Bbix} / P_{Bx}$$
(2.14)

где: Р_{вых} – мощность на выходе четырехполюсника,

P_{вх} – мощность на входе четырехполюсника.

Обычно, коэффициент передачи по мощности принято определять в децибелах (дБ):

$$K_{p}(\mu E) = 10 \cdot \lg(K_{p})$$
(2.15)

Однонаправленный коэффициент передачи транзистора, который можно реализовать с помощью согласующих цепей, определяется по формуле

$$K_{pmax} = \frac{|S_{21}|^2}{\left(1 - |S_{11}|^2\right) \cdot \left(1 - |S_{22}|^2\right)}$$
(2.16)

В случае идеального согласования ($S_{11} = S_{22} = 0$) коэффициент передачи определяется как $K_{p max} = |S_{21}|^2$.

Наряду с отмеченным выше коэффициентом передачи используется однонаправленный коэффициент передачи с нейтрализацией обратной связи $K_{p max max}$, который является максимально возможным при двухстороннем комплексно-сопряженным согласовании транзистора. Данный коэффициент связан с коэффициентом устойчивости K_y .

$$\mathbf{K}_{y} = \frac{1 + |\Delta \mathbf{S}|^{2} - |\mathbf{S}_{11}|^{2} - |\mathbf{S}_{22}|^{2}}{2 \cdot |\mathbf{S}_{12}| \cdot |\mathbf{S}_{21}|}$$
(2.17)

где $\Delta S = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$ – определитель матрицы [S].

При $K_y > 1$ транзистор считается устойчивым, т.е. не будет самовозбуждаться. При этом $K_{p \max \max}$ рассчитывается по формуле 2.19

$$\mathbf{K}_{p \max \max} = \frac{\left| \mathbf{S}_{21} / \mathbf{S}_{12} - 1 \right|^2}{2 \cdot \mathbf{K}_{y} \cdot \left| \mathbf{S}_{21} / \mathbf{S}_{12} \right| - 2 \cdot \operatorname{Re}(\mathbf{S}_{21} / \mathbf{S}_{12})}$$
(2.18)

Примечание: при расчете варианта, если коэффициент устойчивости (K_y > 1), то расчет К_{р max max} производить не нужно.

2.4 Определение элементов эквивалентной модели полевого транзистора

Рисунок 2.1 – Эквивалентная схема полевого транзистора

Элементы эквивалентной схемы полевого транзистора определяются на основе Y-параметров. Поэтому вначале нужно перевести S-параметры в Y-параметры. Основные элементы эквивалентной схемы полевого транзистора определяются по следующим выражениям 2.19 – 2.25.

$$C_{3C} = -Im(Y_{12})/\omega$$
 (2.19)

$$C_{3H} = [Im(Y_{11}) + Im(Y_{12})] / \omega$$
(2.20)

$$S_0 = \sqrt{(\text{Re}(Y_{21} - Y_{12}))^2 + (\text{Im}(Y_{21} - Y_{12}))^2}$$
(2.21)

$$=C_{3H}/S_0$$
 (2.22)

$$R_0 = \frac{1}{\text{Re}(Y_{22}) + \text{Re}(Y_{12})}$$
(2.23)

$$C_{CH} = (Im(Y_{22}) + Im(Y_{12})) / \omega$$
(2.24)

$$R_{3H} = \frac{|\operatorname{Re}(Y_{11})|}{(\operatorname{Im}(Y_{11}) + \operatorname{Im}(Y_{12}))^{2} + \operatorname{Re}(Y_{11})^{2}}$$
(2.25)

$$f_{T} = \frac{S_{0}}{2\pi \cdot (C_{3V} + C_{3C})}$$
(2.26)

Контактные сопротивления R_3 и R_C при расчете принимаются равными 1 Ом, а сопротивление $R_H = 0.1$ Ом.

3 Пример расчета

Исходные данные: f = 4000 МГц;

$$\begin{split} |\mathbf{S}_{11}| &= 0.97, \quad \phi_{11} = -30; \\ |\mathbf{S}_{12}| &= 0.043, \quad \phi_{12} = 74; \\ |\mathbf{S}_{21}| &= 2.1, \quad \phi_{21} = 154; \\ |\mathbf{S}_{22}| &= 0.77, \quad \phi_{22} = -11. \end{split}$$

1. Преобразование S-параметров в алгебраическую форму.

$$\begin{split} S_{11} = & |S_{11}| \cdot (\cos(\phi_{11}) + j \cdot \sin(\phi_{11})) = \\ = & 0.97 \cdot (\cos(-30) + j \cdot \sin(-30)) = 0.84 - j \cdot 0.485 \\ S_{12} = & 0.012 + j \cdot 0.041 \\ S_{21} = & -1.887 + j \cdot 0.921 \\ S_{22} = & 0.756 - j \cdot 0.147 \end{split}$$

2. Расчет Ү-параметров по формулам 2.1 – 2.4.

$$\begin{split} \mathbf{Y}_{11} &= \frac{1}{\rho} \cdot \left[\frac{(1 - \mathbf{S}_{11})(1 + \mathbf{S}_{22}) + \mathbf{S}_{12} \cdot \mathbf{S}_{21}}{(1 + \mathbf{S}_{11})(1 + \mathbf{S}_{22}) - \mathbf{S}_{12} \cdot \mathbf{S}_{21}} \right] = 237.871 \cdot 10^{-6} + \mathbf{j} \cdot 4.804 \cdot 10^{-3} \\ \mathbf{Y}_{12} &= \frac{1}{\rho} \cdot \left[\frac{-2 \cdot \mathbf{S}_{12}}{(1 + \mathbf{S}_{11})(1 + \mathbf{S}_{22}) - \mathbf{S}_{12} \cdot \mathbf{S}_{21}} \right] = 18.938 \cdot 10^{-6} + \mathbf{j} \cdot 507.263 \cdot 10^{-6} \\ \mathbf{Y}_{21} &= \frac{1}{\rho} \cdot \left[\frac{-2 \cdot \mathbf{S}_{21}}{(1 + \mathbf{S}_{11})(1 + \mathbf{S}_{22}) - \mathbf{S}_{12} \cdot \mathbf{S}_{21}} \right] = 24.558 \cdot 10^{-6} - \mathbf{j} \cdot 3.391 \cdot 10^{-3} \\ \mathbf{Y}_{22} &= \frac{1}{\rho} \cdot \left[\frac{-2 \cdot \mathbf{S}_{21}}{(1 + \mathbf{S}_{11})(1 + \mathbf{S}_{22}) - \mathbf{S}_{12} \cdot \mathbf{S}_{21}} \right] = 2.245 \cdot 10^{-6} + \mathbf{j} \cdot 1.321 \cdot 10^{-3} \end{split}$$

3. Расчет входного сопротивления

В последовательном представлении:

$$Re(Z_{BX}) = \rho \cdot \frac{1 - |S_{11}|^2}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2} = 11.33$$
$$Im(Z_{BX}) = \rho \cdot \frac{2 \cdot |S_{11}| \cdot \sin \varphi_{11}}{1 - 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2} = -185.959$$
$$R_{BX} = Re(Z_{BX}) = 11.33, C_{BX} = \frac{1}{\omega \cdot Im(Z_{BX})} = 0.213 \, \text{m}\Phi$$

В параллельном представлении:

$$Re(Y_{BX}) = \frac{1}{\rho} \cdot \frac{1 - |S_{11}|^2}{1 + 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2} = 0.326 \cdot 10^{-3}$$
$$Im(Y_{BX}) = \frac{1}{\rho} \cdot \frac{2 \cdot |S_{11}| \cdot \sin \varphi_{11}}{1 + 2 \cdot |S_{11}| \cdot \cos \varphi_{11} + |S_{11}|^2} = -5.358 \cdot 10^{-3}$$
$$R_{BX, \Pi OCTI} = 1/Re(Y_{BX}) = 3063, \quad C_{BX} = \frac{Im(Y_{BX})}{\omega} = 0.213 \, \Pi \Phi$$

4. Расчет выходного сопротивления

В последовательном представлении:

$$\begin{aligned} \operatorname{Re}(Z_{\text{bbix}}) &= \rho \cdot \frac{1 - |S_{22}|^2}{1 - 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2} = 250.695\\ \operatorname{Im}(Z_{\text{bbix}}) &= \rho \cdot \frac{2 \cdot |S_{22}| \cdot \sin \varphi_{22}}{1 - 2 \cdot |S_{22}| \cdot \cos \varphi_{22} + |S_{22}|^2} = -180.953\\ \operatorname{R}_{\text{bbix.fiapally}} &= \operatorname{Re}(Z_{\text{bbix}}) = 250.695, \qquad \operatorname{C}_{\text{bbix.fiapally}} = \frac{1}{\omega \cdot \operatorname{Im}(Z_{\text{bbix}})} = 0.219 \, \mathrm{In} \Phi \end{aligned}$$

В параллельном представлении:

$$\operatorname{Re}(\mathbf{Y}_{\text{Bbix}}) = \frac{1}{\rho} \cdot \frac{1 - |\mathbf{S}_{22}|^2}{1 + 2 \cdot |\mathbf{S}_{22}| \cdot \cos \varphi_{22} + |\mathbf{S}_{22}|^2} = 2.623 \cdot 10^{-3}$$
$$\operatorname{Im}(\mathbf{Y}_{\text{Bbix}}) = \frac{1}{\rho} \cdot \frac{2 \cdot |\mathbf{S}_{22}| \cdot \sin \varphi_{22}}{1 + 2 \cdot |\mathbf{S}_{22}| \cdot \cos \varphi_{22} + |\mathbf{S}_{22}|^2} = -1.893 \cdot 10^{-3}$$
$$\operatorname{R}_{\text{Bbix}} = 1/\operatorname{Re}(\mathbf{Y}_{\text{Bbix}}) = 381.308, \ \operatorname{C}_{\text{Bbix}} = \frac{\operatorname{Im}(\mathbf{Y}_{\text{Bbix}})}{\omega} = 0.213 \, \mathrm{m}\Phi$$

5. Расчет коэффициента передачи Без согласующих цепей, в тракте 50 Ом:

$$K_{p \max} = |S_{21}|^2 = 4.41$$

С учетом согласующих цепей:

$$K_{pmax} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2) \cdot (1 - |S_{22}|^2)} = 183.295$$
$$10 \cdot \log_{10}(K_{pmax}) = 22.632$$

6. Расчет коэффициента устойчивости

$$\Delta \mathbf{S} = \mathbf{S}_{11} \cdot \mathbf{S}_{22} - \mathbf{S}_{12} \cdot \mathbf{S}_{21} = 0.624 - \mathbf{j} \cdot 0.422$$
$$\mathbf{K}_{y} = \frac{1 + |\Delta \mathbf{S}|^{2} - |\mathbf{S}_{11}|^{2} - |\mathbf{S}_{22}|^{2}}{2 \cdot |\mathbf{S}_{12}| \cdot |\mathbf{S}_{21}|} = 0.191$$

7. Определение элементов эквивалентной модели $C_{\alpha\alpha} = -Im(Y_{\alpha})/\omega = 0.02 \pi \Phi$

$$C_{3C} = -\operatorname{Im}(Y_{12}) / \omega = 0.02 \, \mathrm{Int}^{2}$$

$$C_{3H} = [\operatorname{Im}(Y_{11}) + \operatorname{Im}(Y_{12})] / \omega = 0.17 \, \mathrm{Im}^{2}$$

$$S_{0} = \sqrt{(\operatorname{Re}(Y_{21} - Y_{12}))^{2} + (\operatorname{Im}(Y_{21} - Y_{12}))^{2}} = 0.024$$

$$\tau = C_{3H} / S_{0} = 6.92 \, \mathrm{Inc}$$

$$R_{0} = \frac{1}{\operatorname{Re}(Y_{22}) + \operatorname{Re}(Y_{12})} = 409.209$$

$$C_{CH} = (\operatorname{Im}(Y_{22}) + \operatorname{Im}(Y_{12})) / \omega = 0.032 \, \mathrm{Im}^{2}$$

$$R_{3H} = \frac{|\operatorname{Re}(Y_{11})|}{(\operatorname{Im}(Y_{11}) + \operatorname{Im}(Y_{12}))^{2} + \operatorname{Re}(Y_{11})^{2}} = 12.842$$

$$f_{T} = \frac{S_{0}}{2\pi \cdot (C_{3H} + C_{3C})} = 20.57 \, \mathrm{IT} \mathrm{Im}$$

4 Задание на лабораторную работу

В ходе выполнения лабораторной работы необходимо выполнить моделирование основных параметров полевого транзистора, элементы эквивалентной схемы которого были определены во время выполнения расчетного задания.

4.1 Настройка проекта и создание схемы

Установите начальную и конечную частоту моделирования в настройках проекта в соответствии с рисунком 4.1.

Frequencies	Schematics/D	agrams	Global Units	Interpolation/Passivity	Yield Options	
Current Range 500 600 700 800 900 1000 1100 1200 1300 1400		Modify Range Start (MHz) 500 Stop (MHz) 10000 Step (MHz) 100		Single point Add Delete Replace		
1500 96 points Delete	Selected O	ep Type Linear Logarithmic	Data Entry Units MHz	global units		

Рисунок 4.1 – Настройки частот моделирования

Для построения схемы необходимо использовать линейную модель полевого транзистора Elements->Circuit Elements->Linear Devices->FET. Первый порт подключается к затвору транзистора (1), второй к стоку (2), вывод истока соединяется с общим проводом (3). На рисунке 4.2 приведена схема подключения модели транзистора, в таблице 4.1 приведены соответствия между рассчитанными параметрами и параметрами модели транзистора, на рисунке 4.2 приведен пример определения параметров модели транзистора.

Рисунок 4.2 – Схема подключения модели транзистора

Расчетный	Параметр модели	Расчетный	Параметр модели	
параметр		Параметр		
C _{3C}	CDG	R_0	RDS	
С _{зИ}	CGS	Сси	CDC, CDS	
\mathbf{S}_0	G	R _{зИ}	RI	
τ	Т	\mathbf{f}_{T}	F	
$R_{\rm H} = 0.1$	RS	Всегда равен 0	GGS	

Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Step	Description
🚺 ID	F1								Element ID
🖪 G	0.024	S							Magnitude of transconductance at DC (beta)
ВТ	0.007	ns							Time delay of the transconductance
B F	20600	MHz							Roll off frequency of the transconductance
B CGS	0.17	pF							Gate to source capacitance
B GGS	0	S							Gate to source conductance
B RI	13	Ohm							Channel resistance
B CDG	0.020	рF							Drain to gate capacitance
B CDC	0.032	pF							Dipole layer capacitance
B CDS	0.032	pF							Drain to source capacitance
B RDS	409	Ohm							Drain to source resistance
B RS	0.1	Ohm							Source resistance

Рисунок 4.3 – Пример определения параметров модели

4.2 Моделирование основных характеристик полевого транзистора

Необходимо выполнить построение следующих графиков: S-параметры транзистора (S_{11} , S_{12} , S_{21} , S_{22}) в линейном формате, входной и выходной импедансы транзистора.

Рисунок 4.4 – Пример S-параметров полевого транзистора

Для построения графиков входного и выходного импеданса необходимо при добавлении измерения на график выбрать Measurment Type->Linear и Measurment->ZIN. Входному импедансу будет соответствовать Port Index 1, выходному Port Index 0. Необходимо вывести реальную (Real) и мнимую (Imag) часть импедансов. На рисунке 4.5 приведен пример параметров выбора измерений, на рисунке 4.6 приведены примеры графиков входного и выходного импедансов.

leasurements						
Measurement	Type	Measurement	Search	Data Source Name	1	
Data		R_PRL	^	Schematic 2		
	agnetic	R_SRL		Port index		
Cincar Load Pull Nonlinear Output Equations System Yield		VSWR		1		
		YM1		Sweep Freg (FDOC, n=96)		
		Yeven		Use for x-axis	v >	
		ZIN				
Input Impedan	ce at a Port					
Simulator	Default Linear					
Configuration						
comgaration	Default		~			
Complex Modif	îer					
• Real	◯ Imag. ◯ Ma	ig. 🔿 Angle 🔿 Angl	leU			
Co	omplex O Cor	njugate 🗌 dB				

Рисунок 4.5 - Вывод графика реальной части входного импеданса

Рисунок 4.6 – Пример графика входного (А) и выходного (Б) импедансов транзистора

Приложение А Таблица А.1 – Варианты расчетных заданий

N⁰	S ₁₁	φ _{11гр}	S ₁₂	φ _{12гр}	S ₂₁	Ф _{21гр}	S ₂₂	ф _{22гр}	f, MГц
1	0.977	-26	0.043	74	2.07	154	0.77	-11	4000
2	0.96	-33	0.054	70	2.05	147	0.76	-15	5000
3	0.93	-48	0.09	57	4.37	140	0.6	-39	4000
4	0.92	-53	0.1	53	4.2	135	0.58	-43	4500
5	0.925	-41	0.047	70	5.6	150	0.11	-126	1000
6	0.82	-73	0.08	57	4.7	126	0.2	-148	2000
7	0.73	-101	0.1	45	3.8	107	0.25	-169	3000
8	0.94	-50	0.05	60	9.3	147	0.4	-49	1000
9	0.85	-89	0.07	41	7.4	122	0.36	-85	2000
10	0.78	-133	0.1	18	4.9	93	0.31	-128	4000