Министерство науки и высшего образования Российской Федерации Томский государственный университет систем управления и радиоэлектроники

Е. В. Рогожников Э. М. Дмитриев К. В. Диноченко

СИСТЕМЫ РАДИОДОСТУПА

Методические указания для выполнения лабораторных работ для студентов направления подготовки 11.04.02 по дисциплине Системы радиодоступа

УДК 681.3.068 ББК 32.973.2 Р 598

Репензент:

Абенов Р. Р., доцент кафедры телекоммуникаций и основ радиотехники ТУСУРа, канд. техн. наук

Рогожников, Евгений Васильевич

Р 598 Системы радиодоступа: Методические указания для выполнения лабораторных работ для студентов направления подготовки 11.04.02 по дисциплине Системы радиодоступа / Е. В. Рогожников, Э. М. Дмитриев, К. В. Диноченко – Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2021. – 42 с.

Настоящие учебно-методическое пособие содержит указания по выполнению лабораторных работ по дисциплине Системы радиодоступа. Данный лабораторный практикум имеет цель закрепить, полученные в ходе курса, принципы построения современных систем цифровой радиосвязи, построение беспроводных сетей и систем, а также навыки работы с математическим пакетом GNU Octave.

Одобрено на заседании кафедры ТОР, протокол № 8 от 29 апреля 2021 г.

УДК 681.3.068 ББК 32.973.2

© Рогожников Е.В., Дмитриев Э.М., Диноченко К.В., 2021 © Томск. гос. ун-т систем управления и

радиоэлектроники, 2021

Оглавление

ВВЕДЕНИЕ	4
Лабораторная работа №1	5
Лабораторная работа №2	7
Лабораторная работа №3	11
Лабораторная работа №4	15
Лабораторная работа №5	20
Лабораторная работа №6	25
Лабораторная работа №7	28
Лабораторная работа №8	31
Лабораторная работа №9	34
Лабораторная работа №10	39
СПИСОК ЛИТЕРАТУРЫ	42

ВВЕДЕНИЕ

Лабораторный практикум по курсу "Системы радиодоступа" предназначен для закрепления и расширения теоретические знаний студентов в области построения современных систем цифровой радиосвязи, построения беспроводных сетей и систем.

Первая часть лабораторного практикума, предназначенного для студентов направления подготовки 11.04.02, содержит описание следующих работ:

- 1) Начало работы с Octave;
- 2) Реализация BPSK приемника и передатчика в Octave;
- 3) Реализация QPSK приемника и передатчика в Octave;
- 4) OFDM модуляция;
- 5) Кадровая и частотная синхронизация;
- 6) Технология МІМО и кодирование Аламоути;

Лабораторные работы данного перечня выполняются на базе микроконтроллеров в среде разработки GNU Octave. Среда разработки GNU Octave — это свободная программная система для математических вычислений, использующая совместимый с MATLAB язык высокого уровня. Данную программу можно скачать с официального сайта https://www.gnu.org/software/octave/.

Лабораторная работа №1 «Начало работы с Octave»

Цель работы: Изучить основные функции и блоки Octave и составить тестовую программу.

Задачи лабораторной работы:

- 1) Изучить основные функции и блоки Octave.
- 2) Произвести генерацию синусоидального сигнала в Octave. Снять характеристики частоты сгенерированных колебаний.
 - 3) Произвести сложение и умножение гармонических сигналов.

Ход выполнения работы

Первые три строки программы, как правило, такие:

```
clc
clear all
close all
```

clc — очищает «Командное окно»; clear all — удаляет все переменные из «Области переменных», очищает память; close all — закрывает все открытые фигуры.

Постройте гармонический сигнал во временной и частотной области со следующими параметрами:

```
F0 = 10 \ \mbox{k} \Gamma \mbox{ц} - \mbox{несущая частота,} \\ Fs = 250 \ \mbox{k} \Gamma \mbox{ц} - \mbox{частота дискретизации,} \\ N = 100 - \mbox{количество отсчетов.} \\
```

Реализация в Octave:

```
clc
clear all
close all
F0 = ...;
Fs = ...;
N = ...;
t = (0:N-1)/Fs; временные отсчеты
sig = sin (2*pi*F0*t); гармонический сигнал
figure
plot(t,sig);
grid on
xlabel('Time, s','fontsize',16);
ylabel('Amplitude','fontsize',16);
```

Результат выполнения кода показана на рисунке 1.1.

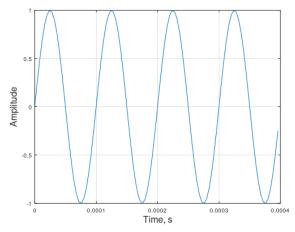


Рисунок 1.1 – Полученный гармонический сигнал

Самостоятельные задачи.

Задача 1. Постройте спектр синусоидального сигнала, используя функцию fft(). Задайте ось частот аналогично временным отсчетам. Сформируйте еще один синусоидальный сигнал частотой 50 к Γ ц. Используя цикл for, произведите перемножение и суммирование 2 синусоидальных сигналов.

Задача 2. Создайте 2 битовые последовательности (A и B) состоящие из 100 элементов (N = 100), используя функцию randi. Используя цикл for и функцию if, произведите суммирование по модулю 2.

Таблица 1.1 – Таблица истинности XOR.

BX	ОД	ВЫХОД
0	0	0
0	1	1
1	0	1
1	1	1

Контрольные вопросы к лабораторной работе

- 1) Для чего может использоваться среда разработки Octave?
- 2) Как вывести рисунок на экран?
- 3) Как рассчитать спектр сигнала?
- 4) Как задать псевдослучайную битовую последовательность?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение.
- 2) Описание работы.
- 3) Рисунки:
- Гармонический сигнал.
- Спектр гармонического сигнала.
- Спектр произведения гармонических сигналов.
- Спектр суммы гармонических сигналов.
- 4) Выводы.
- 5) Полный листинг программы.

Лабораторная работа №2 «Реализация BPSK передатчика и приёмника в Octave»

Цель работы: Изучить принцип переноса BPSK последовательности на несущую частоту.

Задачи лабораторной работы:

- 1) Выполнить BPSK модуляцию сигнала.
- 2) Произвести перенос последовательности на несущую частоту.
- 3) Выполнить обработку BPSK модулированного сигнала.

Ход выполнения работы

В данной работе необходимо создать битовую последовательность, произвести BPSK модуляцию, интерполировать ее, перенести на несущую частоту. В приемнике произвести перенос на нулевую частоту, фильтрацию, децимацию, демодуляцию и проверить количество ошибок.

Формирование сигнала. Передатчик.

```
сlс
clear all
close all
%Выберите размер ВРЅК последовательности
size = 1000;
%Установите несущую частоту
fc=5e6;
%Задайте частоту дискретизации
fs=20e6;
%Задайте коэффициент интерполяции
L = 16;
```

Сформируйте битовую последовательность.

```
RANDOMDATA = randi([0\ 1], 1, 10000);
DATA = RANDOMDATA(1:size);
```

Произведите BPSK модуляцию.

```
for i=1:size
    if (DATA(i)==1)
        MOD_DATA(i) = 1;
    else
        MOD_DATA(i) = -1;
    end;
    end
```

Постройте созвездие модулированного сигнала, используя функцию scatterplot(). Для использования этой функции необходимо загрузить ее написав pkg load communications в командное окно и выполнить.

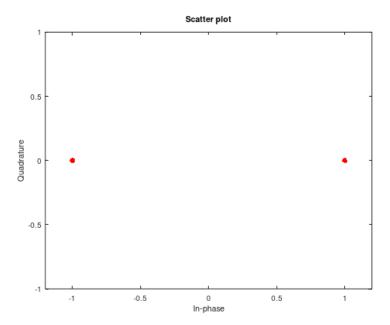


Рисунок 2.1 – Сигнальное созвездие BPSK

Выполните интерполяцию. Если MOD_DATA имеет размерность 1000 символов, на выходе интерполятора должно быть в \bot раз больше символов. Пример функции интерполяции представлен ниже.

```
p=1; q=1;
for k=1:size
MOD_DATA_interp(q:L*p) = MOD_DATA(k);
q=(p*L+1);
p=p+1;
end
```

Задайте временной диапазон.

```
t = (0:length(MOD_DATA_interp)-1)/fs;
```

Задайте гармонический сигнал с несущей частотой fc.

```
car_sig = sin(...
```

Перенесите BPSK последовательность MOD_DATA_interp на несущую частоту, путем умножения на гармонический сигнал. Постройте ее график с помощью функции plot, опираясь на прошлые работы (рисунок 2.2 С.). Функция xlim используется для ограничения диапазона построения графика.

```
RECO=...
figure
plot(RECO);
xlim([0, 200]);
```

Добавьте белый шум с помощью функции awgn. Отношение сигнал-шум задайте равным 15.

```
RECO_AWGN=awgn(RECO, 15, 'measured')
```

Обработка сигнала. Приёмник.

Верните BPSK последовательность на нулевую частоту, повторно перемножив BPSK последовательность с гармоническим сигналом. Постройте ее график (Рисунок 2.2 Е.).

```
REVIVE =...
```

Выполните фильтрацию полученных данных на нулевой частоте путем интегрирования (Рисунок 2.2 G.).

```
for i=1:length(REVIVE)/L \\ a(i) = sum(REVIVE(i*L-L+1:i*L))/(L/2); \\ y(i*L-L+1:L*i) = a(i); \\ end
```

Произведите децимацию, а затем демодуляцию полученных данных. Цель демодуляции – преобразовать сигнал в битовый поток. Используйте цикл и набор условий Постройте график децимированной последовательности (Рисунок 2.2 Н.).

```
decim = y(L:L:end);
for i=1:length(decim)
  if ((decim(i))<0)
    demod(i) = 0;
  else
    demod(i) = 1;
    end
  end</pre>
```

Посчитайте ошибки с помощью функции biterr().

```
err = biterr(DATA, demod);
```

Используя функцию scatterplot() постройте созвездие сигнала после обработки (Рисунок 2.2 I.). На графиках ниже приведен результат выполнения работы.

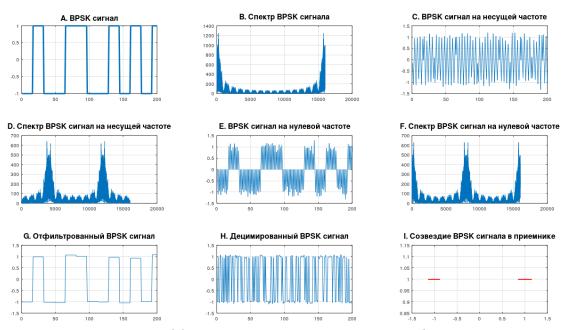


Рисунок 2.2 – Поэтапные результаты выполнения работы

Контрольные вопросы к лабораторной работе

- 1) Как произвести интерполяцию?
- 2) Как осуществляется перенос на несущую частоту?
- 3) Как осуществляется возвращение данных на нулевую частоту?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма
- 3) Поэтапное описание выполнения работы,
- 4) Рисунки:
- BPSK сигнал,
- BPSK сигнал на несущей частоте,
- BPSK сигнал на нулевой частоте,
- Отфильтрованный BPSK сигнал.
- 5) Выводы.
- 6) Листинг программы.

Лабораторная работа №3 «Реализация QPSK передатчика и приёмника в Octave»

Цель работы: Изучить принцип переноса QPSK последовательности на несущую частоту.

Задачи лабораторной работы:

- 1) Выполнить QPSK модуляцию сигнала.
- 2) Произвести перенос последовательности на несущую частоту.
- 3) Выполнить обработку QPSK модулированного сигнала.

Ход выполнения работы

В данной работе необходимо создать битовую последовательность, произвести QPSK модуляцию, интерполировать ее, перенести на несущую частоту. В приемнике произвести перенос на нулевую частоту, фильтрацию, децимацию, демодуляцию и проверить количество ошибок.

Формирование сигнала. Передатчик.

clc

clear all

close all

%Выберите размер QPSK последовательности

size = 1024;

%Установите несущую частоту

fc=10e6;

%Задайте частоту дискретизации

fs=40e6;

%Задайте коэффициент интерполяции

L=4;

Сформируйте битовую последовательность.

```
DATA = randi([0 M-1], 1, size);
```

Произведите QPSK модуляцию, используя команду qammod.

```
MOD_DATA=qammod(. . .
```

Постройте созвездие модулированного сигнала, используя функцию scatterplot(). Для использования этой функции необходимо загрузить ее написав pkg load communications в командное окно и выполнить (рисунок 3.1).

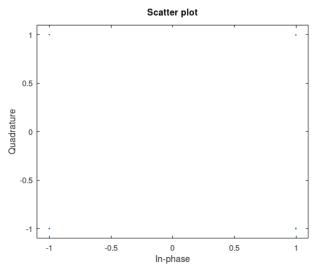


Рисунок 3.1 – Сигнальное созвездие QPSK

Выполните интерполяцию. Если MOD_DATA имеет размерность 1024 символа, на выходе интерполятора должно быть в L раз больше символов. Пример функции интерполяции представлен ниже.

```
p=1; q=1;

for k=1:size

MOD_DATA_interp(q:L*p) = MOD_DATA(k);

q=(p*L+1);

p=p+1;

end
```

Задайте временной диапазон.

```
t = (0:length(MOD_DATA_interp)-1)/fs;
```

Разделите мнимую и действительную части. Постройте их графики с помощью функции plot, опираясь на прошлые работы. Функция xlim используется для ограничения диапазона построения графика (рисунок 3.2).

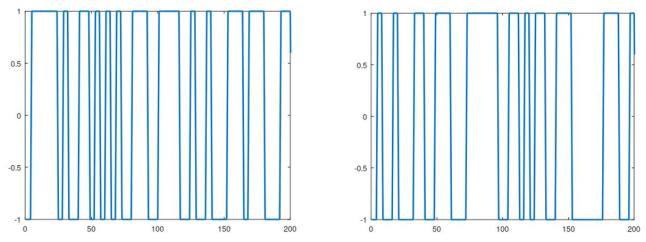


Рисунок 3.2 – Действительная и мнимая составляющая QPSK сигнала

```
Re = real(MOD_DATA_interp);
Im = imag(MOD_DATA_interp);
```

```
figure
plot(Re);
xlim([0, 200]);
```

Задайте гармонический сигнал с несущей частотой fc.

```
car_sig_re = cos(...
car_sig_im = -sin(...
```

Перенесите мнимую и действительную части QPSK последовательности на несущую частоту, путем умножения на гармонический сигнал. Постройте их графики (Рисунок 3.3).

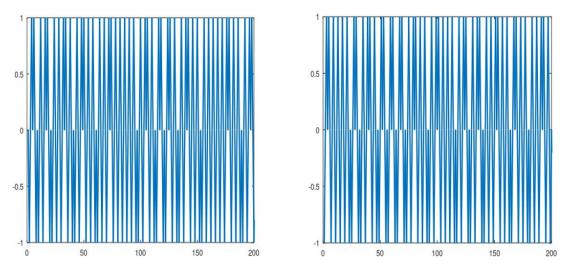


Рисунок 3.3 – Действительная и мнимая составляющая QPSK сигнала на несущей частоте

Обработка сигнала. Приёмник.

Верните QPSK последовательность на нулевую частоту, повторно перемножив мнимую и действительную части QPSK последовательность с гармоническим сигналом. Постройте их графики (Рисунок 3.4).

```
REVIVE =...
IMVIVE =...
```

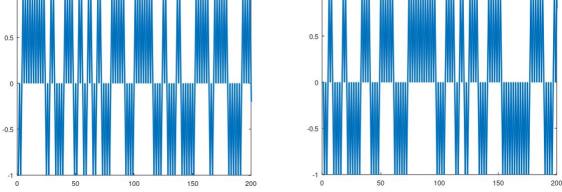


Рисунок 3.4 – действительная и мнимая составляющая QPSK сигнала на нулевой частоте

Выполните фильтрацию полученных данных на нулевой частоте путем интегрирования.

```
for i=1:length(REVIVE)/L
    a(i) = sum(REVIVE(i*L-L+1:i*L))/(L/2);
    y(i*L-L+1:L*i) = a(i);
    end

for i=1:length(IMVIVE)/L
    b(i) = sum(IMVIVE(i*L-L+1:i*L))/(L/2);
    v(i*L-L+1:L*i) = a(i);
    end
```

Сложите действительную и мнимую составляющие (мнимую часть сигнала необходимо умножить на мнимую единицу).

```
Y=
```

Произведите децимацию, а затем демодуляцию полученных данных. Цель демодуляции – преобразовать сигнал в битовый поток. Используйте цикл и набор условий Постройте график децимированной последовательности.

```
decim = y(L:L:end);

demod = qamdemod(...
```

Посчитайте ошибки с помощью функции biterr().

```
err = biterr(DATA, demod);
```

Используя функцию scatterplot() постройте созвездие сигнала после обработки.

Контрольные вопросы к лабораторной работе

- 1) Как произвести интерполяцию?
- 2) Как осуществляется перенос на несущую частоту?
- 3) Как осуществляется возвращение данных на нулевую частоту?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма
- 3) Поэтапное описание выполнения работы,
- 4) Рисунки:
- QPSK сигнал,
- QPSK сигнал на несущей частоте,
- OPSK сигнал на нулевой частоте,
- Отфильтрованный QPSK сигнал.
- 5) Выводы.
- 6) Листинг программы.

Лабораторная работа №4 «ОFDM модуляция»

Цель работы: Сформировать OFDM сигнал. Передать сигнал через канал с аддитивным белым гауссовским шумом, произвести его демодуляцию.

Задачи лабораторной работы:

- 1) Составить программу для передачи OFDM сигнала в среде Octave;
- 2) Произвести модуляцию и демодуляцию сигнала;
- 3) Имитировать передачу сигнала через канал с аддитивным белым гауссовским шумом.
 - 4) Построить спектр, созвездие и временное представление сигнала

Ход выполнения работы

В данной работе необходимо реализовать схему, приведенную на рисунке 4.1.

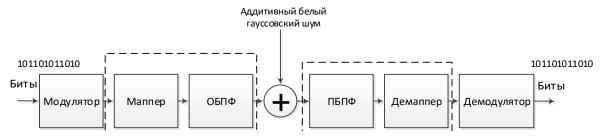


Рисунок 4.1 – Формирование сигнала и прохождение через многолучевой канал

OPSK модуляция и демодуляция.

Создайте битовую последовательность использую функцию randi().

```
clc
    clear all
    close all
    N = 5000;
    bits = randi([0, 1], 1, N);
```

Произведите QPSK модуляцию, используя цикл for и условие if. Ниже приведены 2 условия из 4.

```
k=1;

for i = 1:2:N

if bits(i) == 1 && bits (i+1) == 1

mod_data (k) = 1+1i;

end

if bits(i) == 1 && bits (i+1) == 0

mod_data (k) = 1-1i;

end

...

k=k+1;

end
```

Постройте созвездие модулированного сигнала, используя функцию scatterplot(). Для использования этой функции необходимо загрузить ее написав pkg load communications в командное окно и выполнить.

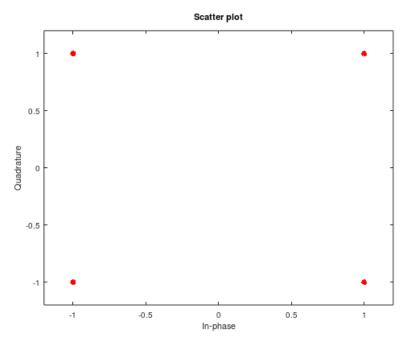


Рисунок 4.2 – Созвездие QPSK сигнала

Используя функцию awgn(), добавьте шум к модулированному сигналу. Отношение сигнал/шум SNR = 15dB.

```
SNR = 15;
mod_data_noise = awgn(mod_data,SNR, 'measured');
```

Постройте созвездие сигнала с шумом, используя функцию scatterplot().

Рисунок 4.3 – Зашумленной воздействие QPSK сигнала

Измените значение SNR с 5, 10, 15, 20 dB. Отобразите сигнальные созвездия для этих значений в отчете.

Осуществите демодуляцию, ниже приведены только 2 условия из 4. Добавьте еще 2 условия, необходимых для демодуляции.

```
k=1;
for i = 1:length(mod_data_noise)
    if real(mod_data_noise (i)) >0 && imag(mod_data_noise (i)) >0
        bits_demod (k) = 1; bits_demod (k+1) = 1;
    end
    if real(mod_data_noise (i)) <0 && imag(mod_data_noise (i)) >0
        bits_demod (k) = 0; bits_demod (k+1) = 1;
    end
    ...
    k=k+2;
end
```

Сравните массивы bits и bits_demod, они должны совпадать.

Формирование OFDM сигнала.

Используя сформированную битовую последовательность и модулятор произведите формирование OFDM сигнала

Задайте следующие параметры:

- Размер преобразования Фурье 1024;
- Защитные интервалы 100 отсчетов слева и 100 отсчетов справа;
- Поднесущие с данными с 101 по 924, (количество поднесущих с данными: 824);
- Модуляция QPSK
- Разместите поднесущие с модулированными данными, так как показано на рисунке 4.4.

Рисунок 4.4 – Расположение поднесущих в OFDM символе

Создайте нулевой массив:

```
spectrum = zeros(1,1024);
```

Разместите поднесущие с модулированными данными, так как показано на рисунке 3.4

```
spectrum(101:924) = mod_data(1:824);
```

Постройте спектр сформированного OFDM сигнала.

```
figure
stem(abs(spectrum));
```

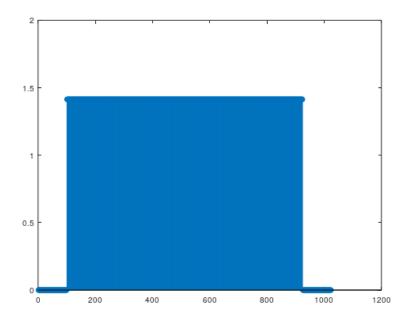


Рисунок 4.5 – Спектр OFDM символа

Сформируйте OFDM сигнал во временной области, используя функцию ifft().

sig_time = ifft(spectrum);

Постройте на рисунке OFDM сигнал во временной области

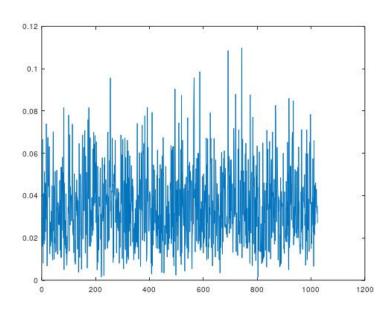


Рисунок 4.6 – OFDM символ во временной области

Канал передачи.

Используя функцию awgn(), добавьте аддитивный шум к сигналу. Установите отношение сигнал/шум 15 дБ;

SNR = 15; sig_noise = awgn(sig_time,SNR, 'measured');

Приемник.

Перейдите к частотной области используя функцию fft(). Постройте на рисунке спектр принятого сигнала. Выберите только поднесущие с данными.

```
spectrum_r = fft(sig_noise);
mod_data_r = spectrum_r(101:924);
```

Постройте созвездие, используя функцию scatterplot().

```
scatterplot(mod_data_r,1,0,"r*");
```

Произведите демодуляцию используя цикл for и условия if. Сравните массивы bits и bits_demod, они должны совпадать.

Контрольные вопросы к лабораторной работе

- 1) Что такое OFDM сигнал?
- 2) Для чего нужны защитные интервалы в частотной области?
- 3) Как связаны временное и частотное представление сигнала?
- 4) Формирование OFDM символа производится во временной или частотной области?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма, который вы применили в работе,
- 3) Параметры OFDM символа,
- 4) Рисунки:
- Созвездие QPSK сигнала при разном отношении сигнал шум,
- Спектр OFDM символа,
- OFDM символ во временной области,
- 5) Выводы.
- 6) Листинг программы.

Лабораторная работа №5 «Оценка канала связи/эквалайзирование»

Цель работы: разработать модель системы передачи данных с использованием OFDM модуляции и передачи данных через многолучевой канал.

Задачи лабораторной работы:

- сформировать OFDM сигнал;
- произвести передачу сигнала через канал с многолучевостью;
- произвести оценку канала связи, эквалайзирование, демодуляцию сигнала.

Ход выполнения работы

В данной работе необходимо реализовать схему, приведенную на рисунке 5.1.

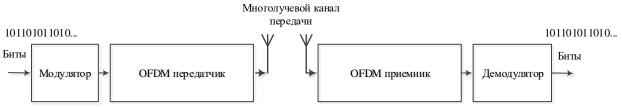


Рисунок 5.1 – Формирование сигнала и прохождение через многолучевой канал

Параметры сигналов приведены в таблице 5.1.

Таблица 5.1 – Параметры сигналов

Параметр	Обозначение	Значение	Пояснения
Размер преобразования Фурье	FFT_size	1024	Общее количество отсчетов на
			символ
Защитные интервалы	GI	100	100 отсчетов слева и 100 отсчетов
			справа
Поднесущие с данными	used_subcar	824	С 101 по 924
Модуляция информационного	index_mod_data	16	16-QAM
символа			
Модуляция пилотного символа	index_mod_pilot	4	QPSK

Параметры канала передачи приведены в таблице 5.2.

Таблица 5.2 – Многолучевого канала передачи

Номер луча	Задержка, отсч.	Ослабление, раз
1	0	1
2	2	0.7
3	4	0.5

Формирование сигнала. Передатчик.

Сформируйте 2 OFDM символа, так как это показано на рисунке 5.2. Первый из них – пилот сигнал, следующий – символ для передачи данных.

Пилотный OFDM символ Информационный OFDM символ

Рисунок 5.2 – Структура формирования сигнала

Создаем 2 битовые последовательности.

```
used_subcar = ...;
index_mod_pilot = ...;
index_mod_data = ...;
data_pilot = randint(1, used_subcar, index_mod_pilot);
data_user = randint(...);
```

Далее выполните модуляцию сигнала.

```
mod_data_pilot = qammod(data_pilot,index_mod_pilot);
mod_data_user = qammod(...);
```

Постройте созвездия сигналов, используя функцию scatterplot().

```
scatterplot(mod_data_user);
scatterplot(...);
```

Созвездие для информационного символа показана на рисунке 5.3.

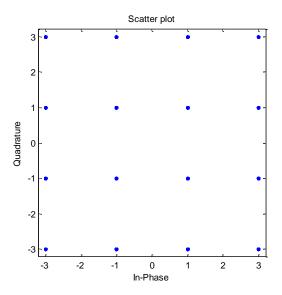


Рисунок 5.3 – Созвездие информационного символа

Следующий шаг – формирование спектра: Расположите поднесущие, как показано на рисунке 5.4.

Рисунок 5.4 – Формирование спектра

Создайте массив нулевых элементов:

```
spectrum_pilot = zeros(1,1024);
spectrum_user = zeros(1,1024);
```

Расположите поднесущие, как показано на рисунке 5.4.

```
spectrum_pilot(101:924) = mod_data_pilot;
spectrum_user(101:924) = mod_data_user;
```

Постройте спектры сигналов, используя функцию plot() и abs().

```
figure
plot(abs(spectrum_user));
...
```

Графическое отображение спектра сигнала с информационными данными представлено на рисунке 5.5.

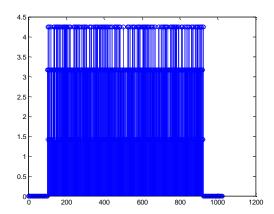


Рисунок 5.5 – Спектр информационного OFDM символа

Перейдите ко временной области, используя функцию ifft().

```
sig_time_user = ifft(spectrum_user);
sig_time_pilot = ...;
```

Объедините два OFDM символа в один массив.

```
sig_time = [sig_time_pilot, sig_time_user];
```

Формирование канала передачи.

Далее выполните моделирование многолучевого канала распространения радиоволн. Установите 3 коэффициента ослабления согласно таблице 5.2

```
k1 = ...;
k2 = ...;
k3 = ...;
```

Сформируйте 3 сигнала. Первый – прямой с нулевой задержкой и ослаблением k1. Второй с задержкой в 2 отсчета и ослаблением k2. Третий с задержкой в 4отсчета и ослаблением k3.

```
sig1 = [sig\_time,zeros(1,4)]*k1;
sig2 = [zeros(1,2),sig\_time,zeros(1,2)]*k2;
sig3 = [zeros(1,4),sig\_time]*k3;
```

Далее сигналы суммируются в приемной антенне.

```
sig_time_channel = sig1+sig2+sig3;
```

Используя функцию awgn(), добавьте шум в сформированный сигнал. Отношение сигнал/шум установите равным 25 дБ;

```
SNR = 25;
sig_recive_noise = awgn(sig_time,SNR, 'measured');
```

Обработка сигнала. Приёмник.

Запишите в двух разных массива пилотный сигнал и сигнал с данными

```
pilot_recive = sig_recive_noise(1:1024);
user_data_recive = sig_recive_noise(1025:2048);
```

Используя fft функцию получите спектр пилотного символа и символа с данными.

```
spectrum_pilot_r = fft(pilot_recive);
spectrum_user_data_r = fft(user_data_recive);
```

Постройте спектры принятых символов.

```
figure
plot(abs(spectrum_user_data_r));
...
```

Спектр сигнала после канала показан на рисунке 5.6.

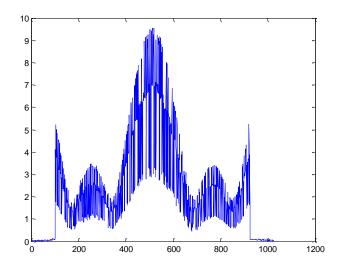


Рисунок 5.6 – Спектр сигнала, прошедшего через канал

Удалите защитные интервалы в частотной области и выберите только поднесущие с данными.

```
pilot_subcarriers = spectrum_pilot_r(101:924);
user data subcarriers = ...;
```

Постройте созвездие сигнала, используя функцию scatterplot(). Создайте опорный сигнал.

```
reference_subcarriers = mod_data_pilot;
```

Произведите оценку передаточной функции канала связи

```
TF_estimate = pilot_subcarriers./reference_subcarriers;
```

Постройте передаточную функцию канала распространения радиоволн.

Произведите операцию эквалайзирования, путем деления спектра принятого сигнала на передаточную функцию.

```
user_data_estimate = user_data_subcarriers./TF_estimate;
```

Выведите на рисунок созвездие сигнала после эквалайзирования. Выполните демодуляцию сигнала.

data_demod = qamdemod(user_data_estimate, index_mod_data);

Сравните массивы data user и data demod, они должны совпадать.

Контрольные вопросы к лабораторной работе

- 1) Что такое пилотный сигнал?
- 2) Что такое передаточная функция канала РРВ?
- 3) Как влияет многолучевость в канале на передаваемый сигнал?
- 4) Что такое эквалайзирование?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма, который вы применили в работе,
- 3) Параметры многолучевого канала,
- 4) Рисунки:
- Спектр сигнала в передатчике,
- Спектр сигнала после прохождения многолучевого канала,
- Созвездие сигнала до эквалайзера,
- Созвездие сигнала после эквалайзера.
- 6) Выводы.

Лабораторная работа №6 «Кадровая синхронизация»

Цель работы: определить начало кадра в канале с случайной задержкой. Задачи лабораторной работы:

- Сформировать кадр из 2 OFDM символов.
- Произвести передачу сигнала через канал с случайной задержкой.
- Произвести оценку начала кадра.

Ход выполнения работы

В данной работе необходимо реализовать схему, приведенную на рисунке 6.1.

Рисунок 6.1 – Формирование сигнала и прохождение через многолучевой канал

Параметры OFDM символов приведены в таблице 6.1.

Таблица 6.1 – Параметры сигналов

Параметр	Обозначение	Значение	Пояснения
Размер преобразования Фурье	NFFT	1024	Общее количество отсчетов на символ
Защитные интервалы	GI	100	100 отсчетов слева и 100 отсчетов справа
Поднесущие с данными	used_subcar	824	С 101 по 924
Модуляция информационного	Sig_time_user		16-QAM
символа			
Модуляция пилотного символа	Sig_time_pilot		QPSK

Ваша задача сформировать 2 разных OFDM символа. Первый из них – пилотный, следующий символ с данными.

Рисунок 6.2. – Структура сигнала

Формирование сигналов.

Сформируйте два различных OFDM символа и объедините их в один массив во временной области.

```
sig_time = [sig_time_pilot, sig_time_user];
```

Добавляем случайную задержку. Используем для этого функцию randint.

```
delay = randint(1,1, 200);
```

Добавляем в начало массива нулевые отсчеты, количество которых рано случайному значению

Добавляем АБГШ, SNR = 30 дБ.

Далее, рассчитываем взаимокорреляционную функцию между пилотным сигналом и принятым сигналом с задержкой.

```
sig_time_pilot = [sig_time_pilot,zeros(1,delay+1024)];
korr = ifft(fft(sig_time_shift).*conj(fft(sig_time_pilot)));
```

Пример ВКФ приведен на рисунке 6.3.

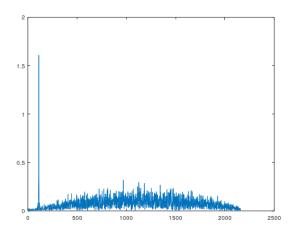


Рисунок 6.3 - ВКФ

Используя функцию тах, находим максимальное значение ВКФ:

```
[value, position] = max(...);
```

Используем положение максимума ВКФ для определения начала символа с данными.

```
user_data_recive = sig_time_shift(position+1024:end);
```

Постройте спектр и созвездие сигнала пользователя.

```
spectrum_user_data_r = fft(....);
scatterplot(....)
```

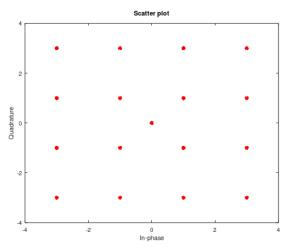


Рисунок 6.4 – Созвездие OFDM символа

Добавьте ошибку в один отсчет при определении начала OFDM символа, постройте созвездие.

```
user_data_recive = sig_time_shift(position-1+1024:end-1);
spectrum_user_data_r = fft(user_data_recive);
scatterplot(spectrum_user_data_r);...
```

Созвездие сигнала при ошибке синхронизации показано на рисунке 6.5.

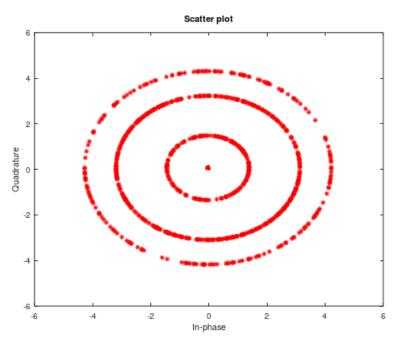


Рисунок 6.5 – Созвездие при ошибке синхронизации

Контрольные вопросы к лабораторной работе

- 1) Что такое кадровая синхронизация?
- 2) К чему приводит ошибка кадровой (временной) синхронизации?
- 3) Что такое циклический префикс?
- 4) Каково назначение пилотного символа?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма, который вы применили в работе,
- 3) Рисунки:
- Корреляционная функция,
- Созвездие при правильной синхронизации,
- Созвездие сигнала при ошибке в 1 отсчет.
- 4) Выводы.
- 4) Листинг программы.

Лабораторная работа №7 «Частотная синхронизация»

Цель работы: произвести оценку и устранение частотного сдвига в системе связи с OFDM модуляцией.

Задачи лабораторной работы:

- 1) Сформировать кадр из 2 OFDM символов.
- 2) Ввести частотный сдвиг.
- 3) Произвести оценку частотного сдвига.
- 4) Произвести коррекцию частотного сдвига.

Ход выполнения работы

В данной работе необходимо ввести частотный сдвиг в OFDM сигнал. Затем в приемнике произвести оценку частотного сдвига и произвести коррекцию частотного сдвига.

Параметры сигнала:

- Количество OFDM символов: 2;
- Размер преобразования Фурье: 1024;
- Модуляция: QAM 16;
- Значение частотного сдвига: 500 Гц,

Поэтапное выполнение.

Сформируйте 2 OFDM символа, далее задайте величину частотного сдвига

```
clc
clear all
close all
NFFT=1024
M = 16;
data = randint(1,824,M);
data_mod = qammod(data,M);
sp_ofsm = [zeros(1,100), data_mod, zeros(1,100)];
sig_vr=ifft(sp_ofsm);
sig_sum=[sig_vr, sig_vr];
% Вводим частотный сдвиг
NN=NFFT*2;
fs=10.24e6;
T=NN/fs;
D_Freq=500;
```

Рассчитываем фазовый набег за время 2 OFDM символов.

```
D_Phi=D_Freq*2*pi*T;
```

Рассчитываем фазовый набег за интервал дискретизации.

```
dphi=D_Phi/NN;
```

Вводим частотный сдвиг.

```
for j=1:NN
sig_freq_shift(j)=sig_sum(j)*exp(1i*dphi*j);
end
```

Добавляем аддитивный шум 35 дБ.

```
sig_freq_shift1=awgn(...);
```

Выбираем отсчеты первого и второго OFDM символа.

```
Pr_sym1=sig_freq_shift1(...);
Pr_sym2=sig_freq_shift1(NFFT+1:2*NFFT);
```

Построим созвездие первого принятого символа 7.1.

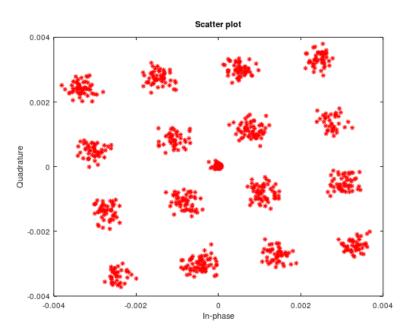


Рисунок 7.1 – Созвездие первого принятого символа

Расчет ВКФ между вторым и первым принятым OFDM символом

```
corr=xcorr(Pr_sym2, ...);
[a,b]=max(corr);
```

Оценка фазового набега

```
Dphi=angle(a);
Dt=1/fs; % расчет длительности символа
Tau=(NFFT)*dt;
Ocen_freq=Dphi/(2*pi*tau);
```

Сравните оценку и вводимый частотный сдвиг, они должны быть близки по величине. Далее рассчитайте фазовый набег за интервал дискретизации по полученной оценке.

```
d_phi_ocen=(ocen_freq*2*pi)/fs;
```

Компенсируем частотный вводя фазовый набег, но с отрицательным знаком.

```
for j=1:1024
Pr_sym1_komp(j)=Pr_sym1(j)*exp(1i*j*(-...));
end
```

Постройте созвездие первого символа после компенсации.

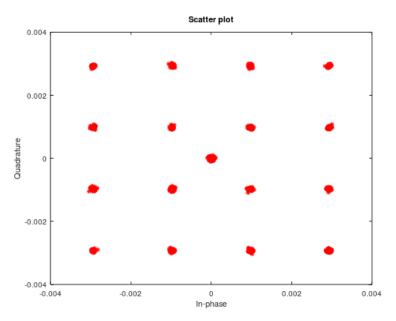


Рисунок 7.2 – Созвездие первого символа после компенсации

Контрольные вопросы к лабораторной работе

- 1) Что такое частотная синхронизация?
- 2) К чему приводит ошибка частотной синхронизации?
- 3) Какие сигнальные конструкции используются для частотной синхронизации?
- 4) Как компенсировать частотный сдвиг в цифровом виде?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма, который вы применили в работе,
- 3) Рисунки:
- Корреляционная функция,
- Созвездие после введения частотного сдвига,
- Созвездие после устранения частотного сдвига.
- 4) Выводы.
- 5) Листинг программы.

Лабораторная работа №8 «Технология МІМО»

Цель работы: произвести моделирование технологии MIMO с пространственным мультиплексированием для 2 передающих и 2 приемных каналов.

Задачи лабораторной работы:

- 1) Сформировать 2 OFDM символа.
- 2) Задать 4 канал связи (прямые и перекрестные).
- 3) Добавить аддитивный белый гауссовский шум.
- 4) Произвести обработку МІМО сигнала для каждого канала.

Ход выполнения работы

В данной работе необходимо реализовать пространственное разделение каналов применяя OFDM модуляцию. Сформируйте 2 OFDM символа с QPSK и QAM-16.

Выполнение работы.

Сформируем 2 OFDM символа во временной области, первый с модуляцией QPSK, второй с модуляцией QAM 16 опираясь на материал прошлых работ.

```
clc
    clear all
    close all
    NFFT = 1024;
    index_mod1 = 4;
    index_mod2 = 16;
    sym1 = ...;
    sym2 = ...;
```

Формируем 4 передаточные функции для канальной матрицы.

Записываем сигналы принимаемые первой и второй приемной антеннами MIMO 2x2 системы.

```
y1 = ifft((sym1).*H11) + ifft((sym2).*H12);
y2 = . . .;
```

Имитируем передачу двух независимых сигналов в случае SISO системы.

```
y_siso1 = ifft((sym1).*H11);
y_siso2 = ifft((sym2).*H22);
```

Добавляем шум и возвращаем сигналы в частотную область.

```
snr = 35;
y1 = awgn(y1, snr, 'measured');
y2 = awgn(y2, snr, 'measured');
y_siso1 = awgn(y_siso1, snr, 'measured');
y_siso2 = awgn(y_siso2, snr, 'measured');
% расчитаем спектр принятого SISO сигнала
sp_siso1 = fft(y_siso1);
sp_siso2 = fft(y_siso2);
% Разбираем сигналы в приемнике
sp_y1 = fft(y1);
sp_y2 = fft(y2);
```

Найдем определитель матрицы и выполним оценку.

```
H_det = H11.*H22-H21.*H12;

x=1./(H_det);

x1_ocen = H22.*x.*sp_y1 + (-1)*H12.*x.*sp_y2;

x2_ocen = (-1)*H21.*x.*sp_y1 + H11.*x.*sp_y2;

x1_siso = sp_siso1./H11;

x2_siso = sp_siso2./H22;
```

Постройте созвездия 1-го и 2-го сигнала для МІМО и для SISO до и после оценок.

```
% созвездия до оценок МІМО scatterplot(sp_y1,1,0,"r*") % scatterplot(sp_y2,1,0,"r*") % % созвездия после оценок МІМО scatterplot(x1_ocen,1,0,"r*") % scatterplot(x2_ocen,1,0,"r*") % % созвездия до оценок SISO scatterplot(sp_siso1,1,0,"r*") % scatterplot(sp_siso2,1,0,"r*") % созвездия после оценок SISO scatterplot(x1_siso,1,0,"r*") % созвездия после оценок SISO scatterplot(x1_siso,1,0,"r*") % scatterplot(x2_siso,1,0,"r*")
```

Измените параметры канальной матрицы, посмотрите, как меняются созвездия.

Контрольные вопросы к лабораторной работе

- 1) Что такое частотная синхронизация?
- 2) К чему приводит ошибка частотной синхронизации?
- 3) Какие сигнальные конструкции используются для частотной синхронизации?
- 4) Как компенсировать частотный сдвиг в цифровом виде?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Схема системы МІМО,
- 3) Блок схема алгоритма, который вы применили в работе,
- 4) Параметры канальной матрицы
- 5) Рисунки:
- Созвездия принятых сигналов до и после обработки.
- 6) Выводы
- 7) Листинг программы

Лабораторная работа №9 «Кодовое разделение каналов»

Цель работы: произвести моделирование системы связи с кодовым разделением каналов.

Задачи лабораторной работы:

- 1) Сформировать битовые последовательности, произвести их модуляцию.
- 2) Используя коды Уолша, произвести кодирование модулированных данных.
- 3) Пропустить сигнал через канал с АБГШ.
- 4) Произвести разделение сигналов в приемнике.

Ход выполнения работы

В данной работе необходимо реализовать схему, приведенную на рисунке 9.1.

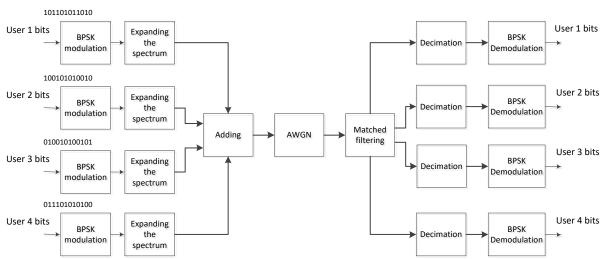


Рисунок 9.1 – Кодовое разделение каналов

Параметры сигналов:

- 1) Количество пользователей -4;
- 2) Количество бит 100;
- 3) Модуляция BPSK;

Этапы выполнения работы.

Сформируйте битовую последовательность для каждого пользователя

```
N = 100;
User_id = 3;
N_users = 4;
k=4;
bits1 = randint(1,N);
.
.
.
.
.
bits4 = randint(1,N);
```

Произведите BPSK модуляцию

Постройте созвездия, используя функцию scatterplot().

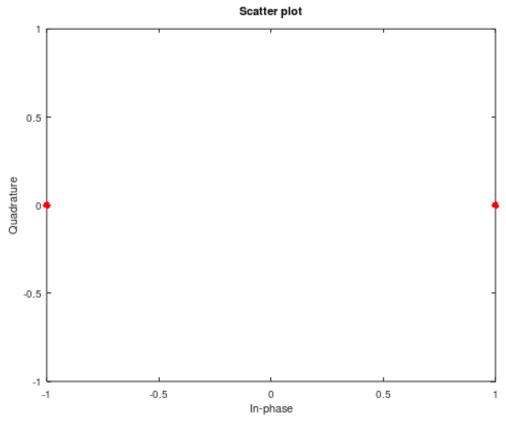


Рисунок 9.2 – Созвездие BPSK сигнала

Сформируйте матицу Адамара

```
mtx=hadamard(N_users);
```

Произведите кодирование сформированных данных, используя функции Уолша.

```
j=1;
  for i=1:N
    if mod_bits1 (i) == 1
        mod_bits_1_code (j:j+k-1)= mtx(1,:);
    else
        mod_bits_1_code (j:j+k-1)= mtx(1,:)*(-1);
    end
    .
    .
    if mod_bits4 (i) == 1
        mod_bits_4_code (j:j+k-1)= mtx(4,:);
    else
        mod_bits_4_code (j:j+k-1)= mtx(4,:)*(-1);
    end
    j=j+k;
    end
```

Постройте на рисунке один из сигналов, используя функцию plot. На рисунке 9.3 показан пример модулированного сигнала.

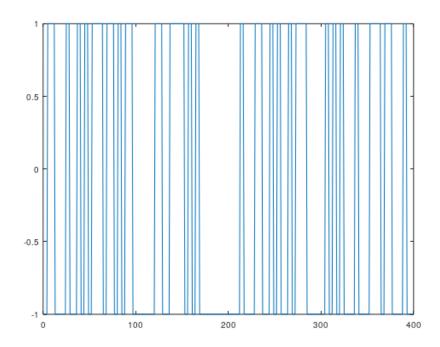


Рисунок 9.3 – Модулированный сигнал

Следующий этап – сложение данных всех пользователей

```
sum_of_signals = mod_bits_1_code+mod_bits_2_code+...;
...
```

Постройте суммарный сигнал, как показано на рисунке 9.4.

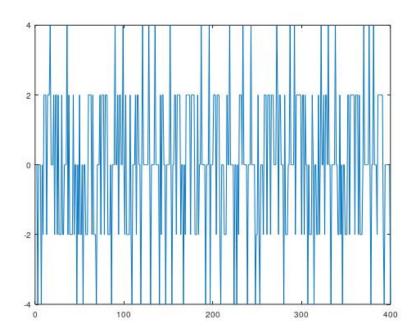


Рисунок 9.4 – Суммарный сигнал от четырёх пользователей

Добавьте аддитивный белый гауссовский шум.

```
sum_of_signals_noise = ...
```

Постройте сигнал после добавления шума.

В приемной части производим корреляционный прием, в качестве опорного сигнала используйте код одного из пользователей.

```
B_long = zeros(1,length(mod_bits_1_code));
B_long(1:k)=mtx(User_id,:);
korr = ifft(fft(sum_of_signals_noise).*conj(fft(B_long)));
```

Выполните децимацию сигнала.

Демодулируйте принятый сигнал.

Посчитайте количество ошибок после демодуляции.

```
num_errors = ...
```

Контрольные вопросы к лабораторной работе

- 1) Что такое матрица Адамара?
- 2) Что такое коды Уолша?
- 3) Как разделяются сигналы в приемнике при кодовом разделении каналов?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема алгоритма, который вы применили в работе,
- 3) Рисунки:
- Переданные сигналы,
- Суммарный сигнал,
- Принятый сигнал одного из пользователей.
- 4) Выводы.
- 5) Листинг программы.

Лабораторная работа №10 «Кодирование Аламоути в технологии МІМО»

Цель работы: Произвести моделирование MIMO технологии для двух передающих и приемных каналов с кодированием Аламоути.

Задачи лабораторной работы:

- 1) Сформировать два ОFDM символа.
- 2) Задать MIMO и SISO каналы связи.
- 3) Реализовать схему передачи при помощи кодирования Аламоути.
- 4) Построить спектр и созвездие сигнала.

Ход выполнения работы

В данной работе необходимо произвести кодирование Аламоути для MIMO технологии и сравнить влияние SNR на число ошибок для данного способа передачи данных и для SISO технологии. Проанализировать результаты и сделать выводы.

Задайте исходные данные

```
NFFT = 1024;

index_mod1 = 4;

index_mod2 = 4;

gi = 199;

conv = (NFFT-gi-1);

snr = 20;

...
```

Задайте битовую последовательность.

```
data_bit = ...
```

Осуществите QPSK модуляцию data_bit.

```
modqpsk = ...
```

Сформируйте два OFDM символа.

```
sym1 = ...
sym2 = ...
```

Задайте еще два OFDM символа следующим образом.

```
sym1z = conj(sym1);
sym2z = -1.*conj(sym2);
```

Сформируйте 4 передаточные функции для канальной матрицы.

```
h11 = zeros(1,NFFT);

h11(1) = 1;

h11(2) = 0.5;

h11(5) = 0.3;

H11 = fft(h11);
```

```
h12 = zeros(1,NFFT);

h12(1) = 1;

h12(2) = 0.5;

h12(4) = 0.3;

H12 = fft(h12);

...
...
```

Запишите сигналы, принимаемые 1 и 2 антенной.

```
y_siso1 = ifft((sym1).*H11);
y_siso2 = ...
```

Добавьте к ним белый шум.

```
y_siso1=...
y_siso2=...
```

Выполнение кодирования и декодирования Аламоути.

Реализуйте передачу символов, используя кодирование Аламоути.

Кодирование Аламоути заключается в том, что мы одновременно передаем в момент времени t1 первый символ, а вместе с ним комплексно-сопряженный второму с отрицательным знаком. В момент времени t2 мы передаем второй символ и комплексно сопряженный первому символу символ.

При таком способе передаче скалярное произведение первой переданной последовательности и второй равно нулю. Что позволяет лучше различать сигналы в приемнике и соответственно повысить помехозащищенность системы передачи данных, а также уменьшить влияние шума. В данной работе реализуется передача 2 на 2.

Сформируйте сигналы, принимаемые антеннами 1 и 2 в промежутки времени t1 и t2.

```
y1 = ifft((sym1).*H11) + ifft((sym2).*H12);
y2 = ifft((sym2z).*(H11)) + ifft((sym1z).*H12);
y3 = ifft(...
y4 = ifft(...
```

Добавляем каждому символу шум и переносим их в область частот

```
n1 = fft(...

n2 = fft(...

n3 = fft(...

n4 = fft(...
```

Оцените переданные символы для схемы Аламоути для случая MIMO и SISO.

```
x1_ocen=(conj(H11).*n1+H12.*conj(n2)+conj(H21).*n3+H22.*conj(n4))./(abs(H11).^2+abs(H12).^2+abs(H21).^2+abs(H22).^2);
...
x1_siso = y_siso1./H11;
x2_siso = y_siso2./H22;
```

Демодулируйте принятые символы

```
rxData1 = ...
rxData2 = ...
```

Посчитайте ошибки после демодуляции.

```
Errors_MIMO = ...
Errors_SISO = ...
```

Постройте созвездия 1-го и 2-го OFDM сигнала для MIMO и для SISO, а также их спектр.

Изменяйте значение SNR от 5 до 30 и сравните результат моделирования технологии с кодированием Аламоути MIMO и технологии SISO.

Контрольные вопросы к лабораторной работе

- 1) В чём ключевое отличие МІМО с кодированием Аламоути от обычного МІМО?
- 2) Почему мы передаем вместе с обычным OFDM символом комплексно сопряженный?
- 3) Какая схема передачи более устойчива к воздействию шума?
- 4) Какая технология по вашему мнению более эффективна MIMO с Аламоути или классическое MIMO?

Требования к оформлению отчета по лабораторной работе.

- 1) Введение,
- 2) Блок схема работы алгоритма, который вы применили в работе,
- 3) Рисунки:
- Спектр сигнала в приемнике для MIMO и SISO,
- Созвездия сигнала в приемнике для MIMO и SISO.
- 4) Выводы.
- 5) Листинг программы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Документация по MATLAB на русском языке URL: https://docs.exponenta.ru/ [дата обращения 28.03.2021].
 - 2. Дьяконов В.П. МАТLAВ. Полный самоучитель М.: ДМК Пресс, 2012. 768 с.
- 3. Щербаков В.С., Руппель А.А., Глушец В.А. ОСНОВЫ МОДЕЛИРОВАНИЯ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ И ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ В СРЕДЕ MATLAB И SIMULINK: Учебное пособие. Омск: Изд-во СибАДИ, 2003. 160 с.