МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

		ВЕРЖДАЮ ор по учебной работе
		П. Е. Троян
	«»	2017 1
РАБОЧАЯ ПРОГРАММА	учебной дисциплині	Ы
«Основы оптоэлектрони	ки и волоконной оп	тики»
Уровень основной образовательной программы	<u>Бакалавриат</u>	
Направление подготовки 11.03.02 <u>«Инфокоммуник</u>	ационные технологии и си	стемы связи»
Профиль «Оптические системы и сети связи»		
Форма обучения очная		
Факультет Радиотехнический		
Кафедра Сверхвысокочастотной и квантово	й радиотехники_(СВЧиКР)_	
Курстретий	Семестр пятый	
Учебный план набора <u>2</u>	<u>016 г.</u> и последующих лет	

Распределение рабочего времени:

№	Виды учебной работы	Семестр 1	Семестр 2	Семестр 3	Семестр 4	Семестр 5	Семестр 6	Семестр 7	Семестр 8	Всего	Единицы
1.	Лекции					40				40	часов
2.	Лабораторные работы					36				36	часов
3.	Практические занятия					32				32	часов
4.	Курсовой проект/работа (КРС) (аудиторная)					-				-	часов
5.	Всего аудиторных занятий (Сумма 1-4)					108				108	часов
6.	Из них в интерактивной форме					-				-	часов
7.	Самостоятельная работа студентов (СРС)					72				72	часов
8.	Всего (без экзамена) (Сумма 5,7)					180				180	часов
9.	Самост. работа на подготовку, сдачу экзамена					36				36	часов
10.	Общая трудоемкость (Сумма 8,9)					216				216	часов
	(в зачетных единицах)					6				6	ЗЕТ

Экзамен ___пятый_____ семестр

Лист согласований

стандарта высі «Инфокоммун	шего профессионального о икационные технологии и регистрационный номер 1	образования (ФГО системы связи»,	ОС ВПО) по утвержденн	о Государственного образовательн направлению подготовки 11.03.02 юго Приказом Минобрнауки Росси а на заседании кафедры « »	2
протокол №	_				
Разработчики	Профессор каф. СВЧиК (должность, кафедра) Профессор каф. ЭП (должность, кафедра)	(подпис		<u>Шандаров В.М.</u> (Ф.И.О.) <u>Давыдов В.Н.</u> (Ф.И.О.)	
Зав. кафедрой	СВЧиКР	(подпі	ись)	<u>Шарангович С.Н.</u> (Ф.И.О.)	
Рабочая п Декан <u>РТФ</u>	рограмма согласована с ф	акультетом, проф		и выпускающей кафедрами. Ва К.Ю.	
Зав. профилир кафедрой <u>С</u>		(подпись)	<u>Шарані</u>	<u>гович С.Н.</u> 4.О.)	
Зав. профилир кафедрой		(подпись)		аров С.М. И.О.)	
Зав. выпускаю кафедрой <u>С</u>	щей ВЧиКР	(подпись)		<u>нгович С.Н.</u> Р.И.О.)	
Эксперты:					
ТУСУР, каф	р.ТОР, доц.		Богом	олов С.И.	
ТУСУР, каф	<u>. СВЧиКР,</u> п <u>роф.</u>		Манд	<u>ель А.Е.</u>	

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ:

Целью преподавания дисциплины является подготовка специалистов в области физических принципов функционирования элементов и приборов оптоэлектроники, а также физических основ и технологии изготовления элементов волоконной оптики.

Основной задачей дисциплины является изучение фундаментальных положений оптоэлектроники, оптики и нелинейной оптики волноводных элементов, особенностей технологии изготовления компонентов оптоэлектроники и волоконной оптики.

В результате изучения дисциплины у студентов должны сформироваться знания, умения и навыки, позволяющие проводить самостоятельный анализ явлений и эффектов в области оптоэлектроники и волоконной оптики, а также эффективно работать в области исследования, проектирования технологии и эксплуатации оптоэлектронных и волоконнооптических элементов, устройств и приборов. Студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие подготовку для усвоения последующих дисциплин.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП:

Дисциплина по выбору вариативной части профессионального цикла (Б1.В.ДВ.2.1).

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- готовность к изучению научно-технической информации, отечественного и зарубежного опыта по тематике проекта (ПК-7);
- способность применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств электросвязи и информатики (ПК-17).

В результате изучения дисциплины студент должен

знать:

- фундаментальные положения теории твердых тел, основные законы и соотношения оптоэлектроники, волновой оптики и оптики направляющих диэлектрических структур (ПК-7);
- основы физики формирования электрических и оптических свойств твердых тел, физики взаимодействия света со средой и основы нелинейной оптики в приложении к оптическим направляющим структурам (ПК-7);
- основы технологии производства оптоэлектронных компонентов, оптических волокон и волноводных элементов (ПК-7, ПК-17);
- устройство, принципы работы и характеристики оптоэлектронных и волоконнооптических приборов (ПК-7, ПК-17).

уметь:

- объяснять физические эффекты, лежащие в основе работы оптоэлектронных и волоконно-оптических компонентов и приборов (ПК-7);
- применять на практике известные методы исследования оптоэлектронных и волоконнооптических элементов и устройств (ПК-17);
- выполнять расчеты, связанные с определением параметров и характеристик оптоэлектронных и волоконно-оптических компонентов и устройств (ПК-17);
- проводить компьютерное моделирование и проектирование оптоэлектронных и волоконно-оптических компонентов и устройств, а также иметь представление о методах компьютерной оптимизации таких устройств (ПК-17);
- пользоваться справочными данными по оптоэлектронным, волоконно-оптическим компонентам и приборам при проектировании инфокоммуникационных систем и сетей

связи, сопоставляя особенности характеристик таких компонентов и приборов (ПК-7);

владеть:

- навыками чтения и изображения схем оптоэлектронных и оптических приборов, систем и сетей на основе современной элементной базы оптоэлектроники и волоконной оптики (ПК-7):
- навыками расчета, проектирования и компьютерного моделирования оптоэлектронных и волоконно-оптических элементов и устройств (ПК-17);
- навыками практической работы с оптоэлектронными и волоконно-оптическими элементами, а также с лабораторными макетами оптоэлектронных, волоконно-оптических приборов и с контрольно-измерительной аппаратурой (ПК-17).

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 6 зачетных единиц.

Вид учебной работы	Всего	Семестры
	часов	5
Аудиторные занятия (всего)	108	108
В том числе:		
Лекции	40	40
Лабораторные работы (ЛР)	36	36
Практические занятия	32	16
Самостоятельная работа (всего), в том числе:	72	72
Изучение материала лекций	24	24
Подготовка к контрольным работам	24	24
Самостоятельное изучение отдельных тем	24	24
Подготовка к экзамену и сдача экзамена	36	36
Вид промежуточной аттестации (зачет, экзамен)	K)	Экзамен
Общая трудоемкость	216	216
Зачетные единицы трудоемкости	6	6

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплины и виды занятий

5.1.1. Основы оптоэлектроники

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия	Курсовой П/Р (КРС)	Самост. работа студента	Всего час. (без экзам)	Формируем ые компетенции (ОК, ПК)
1.	Элементы зонной теории твердых тел.	3	4	3		8	22	ПК-7, 17.
2.	Взаимодействие оптического излучения с твердыми телами.	3	1	3		6	12	ПК-7, 17.
3.	Фотоэлектрические явления в полупроводниках.	4	4	3		10	21	ПК-7, 17
4.	Флуктуационные процессы в полупро-	3	6	3		10	22	ПК-7, 17

водниках и полупроводниковых приборах.							
5. Эмиссия излучения из твердых тел.		4	4	3	8	15	ПК-7, 17
6.	Жидкие кристаллы в оптоэлектронике.	3	-	1	6	10	ПК-7, 17
Перспективы развития оптоэлектроники							
	ВСЕГО	20	18	16	48	108	

5.1.2. Основы волоконной оптики

No	Наименование раздела дисциплины	Лекц.	Лаб.	Практ.	CPC	Всего	Форми-
п/п			зан.	Зан.		час.	руемые
11,11							ком-
							петенции
	D						(ОК, ПК)
1	Введение	1	-	-	2	3	ПК-7
2	Основные соотношения для описания						ПК-7, 17
	плоских световых волн и световых	4	-	4	10	19	
	пучков						
3	Волоконные световоды	2	8	4	10	26	ПК-7, 17
4	Волоконные и интегрально-оптические	4	4	2	8	18	ПК-7, 17
	элементы для волоконной оптики	+	+	2	0	10	
5	Нелинейно-оптические эффекты в	6		2	4	10	ПК-7, 17
	волоконных световодах	U	-	2	4	10	
6	Волоконно-оптические датчики	3	6	4	10	25	ПК-7, 17
-	волоконные лазеры	3	U	+	10	23	
Итого	:						

5.2. Содержание разделов дисциплины

5.2.1. Основы оптоэлектроники

№ п/п	Наименование разделов	Содержание разделов	Трудое мкость (час.)	Формир уемые компете нции (ОК,ПК)
1.	Элементы зонной теории твердых тел.	Основные предпосылки появления оптоэлектроники, её место среди родственных научно-технических направлений. Особенности подхода и преимущества оптоэлектроники при решении задач телекоммуникаций, информатики. Области применения приборов и устройств оптоэлектроники. Электропроводность кристаллов и попытки её объяснения классической электронной теорией. Зонная структура, образование зон из атомных уровней. Модель Зоммерфельда и модель Блоха. Понятие зоны проводимости, запрещённой зоны и валентной зоны. Понятие квазиимпульса электрона. Долины энергии и зона Бриллюэна. Плотность состояний, концентрации носителей в зонах. Распределение частиц по энергии Ферми-Дирака. Понятие о дырке. Движение электронов и дырок под действием поля. Туннелирование частиц через потенциальный барьер. Энергетическое представление токопротекания в твердом теле.	3	ПК-7, ПК-17.
2.	Взаимодействие оптического излучения с твердыми телами.	Основные параметры и характеристики взаимодействия излучения с вещество, закон Бугера - Ламберта. Параметры и характеристики, описывающие взаимодействие света и твердого тела. Типы механизмов поглощения излучения. Физические явления при различных типах поглощения излучения. Внутризонные переходы.	3	ПК-7, ПК-17.
3.	Фотоэлектрические явления в полупроводниках.	Понятие скорости генерации и скорости рекомбинации носителей заряда. Основные параметры, характеризующие изменение состояние вещества при поглощении излучения:		ПК-7,

		времена релаксации концентраций свободных носителей заряда, квантовый выход фотоэффекта. Собственная и примесная фотопроводимость полупроводников, прямые и непрямые переходы, время релаксации форотпроводимости, коэффициент усиления фотопроводимости. Основное выражение для расчета фотоэдс в полупроводниках. Роль неосновных носителей заряда в формировании фотоэффектов. Фотоэдс Дембера. Барьерная фотоэдс в р-п переходах. Квазиуровни Ферми. Сравнение различных типов фотопроводимости и фотоэдс по параметрам и характеристикам.	4	ПК-17.
4.	Флуктуационные процессы в полупроводниках и полупроводниковых приборах.	Основные понятия теории шумов: типы шумов и физические причины их появления, дисперсия и плотности вероятностей. Метод Фурье, спектральная плотность вероятности. Метод Ланжевена. Автокорреляционная функция случайной величины. Рассмотрение теплового, дробового, генерационно-рекомбинационного и избыточного шумов. Численные оценки шумов.	3	ПК-7, ПК-17.
5.	Эмиссия излучения из твердых тел.	Излучательные процессы в полупроводниках. Излучательная способность. Внутренняя и внешняя квантовые эффективности процесса генерации излучения. Разновидности люминесценций. Спектр излучения и его взаимосвязь со спектром поглощения излучения. Спонтанное и вынужденное излучение атома, связь между ними. Критерии возникновения лазерного излучения в полупроводниковых структурах. Физические процессы в полупроводниковых лазерах. Принцип работы инжекционных лазеров и светодиодов.	4	ПК-7, ПК-17.
6.	Жидкие кристаллы в оптоэлектронике. Перспективы развития оптоэлектроники.	Классификация жидких кристаллов. Основные физические свойства и структура нематиков, холестериков, смектиков. Ориентационные эффекты в жидких кристаллах. Переход Фредерикса и эффект "гость-хозяин". Типы оптических ячеек, их подготовка. Основные оптические эффекты в нематических кристаллах. Принцип работы оптической ячейки на S-эффекте. Оптические свойства холестериков. Принципы управления свойствами жидких кристаллов и их применение в оптоэлектронике: оптические транспаранты, ЖК – дефлекторы и ЖК - модуляторы. Перспективы развития оптоэлектроники.	3	ПК-7, ПК-17.

5.2.2. Основы волоконной оптики

№	Наименование	Содержание раздела	Трудоем	Формируемые
п/п	раздела		кость	компетенции
	дисциплины		(час.)	(ОК, ПК)
1	Введение	Задачи курса. Место дисциплины в учебном	1	ОК-9
		процессе.		
2	Основные	Система уравнений электромагнитного поля для	5	ПК-7, ПК-17
	соотношения для	диэлектрической среды. Волновое уравнение.		
	описания плоских	Поляризация света. Поляризационные элементы.		
	световых волн и	Отражение света от плоской границы. Полное		
	световых пучков	внутреннее отражение света. Параболическое		
	-	уравнение теории дифракции. Гауссов световой		
		пучок.		
3	Волоконные	Планарный, канальный и цилиндрический	4	ПК-7, ПК-17
	световоды	диэлектрические волноводы: связь между		
		компонентами электрического и магнитного		
		векторов, волновые уравнения, дисперсионные		
		уравнения для волноводов со ступенчатым		
		профилем, типы направляемых мод и		
		распределения их полей в планарном и		
		цилиндрическом диэлектрических волноводах.		

4	Волоконные и интегрально- оптические эле- менты для воло- конной оптики	Световоды с двойным лучепреломлением; фотонно-кристаллические и некварцевые волоконные световоды — основные характеристики и особенности. Волоконно-оптические брэгговские и длиннопериодные решетки: принципы работы, методы формирования, основные характеристики, области применения. Канальные волноводные пассивные и управляющие элементы для волоконной оптики.	4	ПК-7, ПК-17
5	Нелинейно- оптические эффекты в волоконных световодах	Поляризация диэлектрика в электрическом поле. Среды с квадратичной и кубичной оптической нелинейностью — возможные нелинейнооптические эффекты. Уравнение нелинейных волн. Нелинейно - оптические материалы. Оптические солитоны. Вынужденное комбинационное рассеяние (рамановское рассеяние) и вынужденное рассеяние Мандельштама — Бриллюэна: физические механизмы, особенности проявления в волоконных световодах, области приложения.	4	ПК-7, ПК-17
6	Волоконно- оптические датчики и волоконные лазеры	Классификация волоконно-оптических датчиков по назначению волоконно-оптического тракта и методам модуляции излучения. Принципы построения и примеры реализации волоконно-оптических датчиков с амплитудной, поляризационной, частотной и фазовой модуляцией для измерения различных физических воздействий. Активные волоконные световоды. Волоконные лазеры: история, типовые схемы, характеристики, области применения. Рамановские волоконные лазеры: принцип работы, характеристики, области использования.	3	ПК-7, ПК-17

5.3 Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

No	Наименование обеспечивающих			делов да			
п/п	(предыдущих) и обеспечиваемых			я которы			
	(последующих) дисциплин		обеспе	чивающі	их (пред	ыдущих) и
			обеспо	ечиваемн	ых (посл	едующи	x)
				дис	циплин		
		1	2	3	4	5	6
	Предшествующи	е дисц	иплин	ы			
1	Математический анализ		+	+	+	+	+
2	Физика	+	+	+	+	+	+
3	Информатика	-	+	+	+	+	+
4	Электромагнитные поля и волны	-	-	+	+	+	+
5	Основы физической и квантовой	-	+	+	+	+	+
	оптики						
	Последующие д	дисциі	ІЛИНЫ				
1	Оптические направляющие среды	-	+	+	+	+	+
2	Оптические цифровые	-	+	-	+	+	+
	телекоммуникационные системы						
3	Волоконно-оптические устройства и	-	+	+	+	+	+
	системы технологического назначения						

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень		Ви	ды заняті	ий		Формы контроля по всем видам занятий
компетенций	Л	Лаб	Пр.	КР/КП	CPC	
ПК-7	+	+	+	-	+	Выступление на семинарах. Опрос на
						лабораторных работах. Зачет
ПК-17	+	+	+	-	+	Выступление на семинарах. Опрос на
						лабораторных работах. Зачет

 $[\]bar{\Pi}$ – лекция, Лаб – лабораторные работы, Пр – практические занятия, КР/КП – курсовая работа/проект, СРС – самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Для успешного освоения дисциплины применяются различные образовательные технологии, которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе, с учетом требований к объему занятий в интерактивной форме.

7. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

7.1. Основы оптоэлектроники

$N_{\underline{0}}$	$N_{\underline{0}}$		Трудо-	Формируемые
Π/	раздела	Наименование лабораторных работ	емкость	компетеции
П	дисципл		(час.)	(ОК, ПК)
	ины			
		Измерение ширины запрещенной зоны полупроводника	4	ПК-7, ПК-17
1	1	методом температурного сканирования.		
2	3	Исследование фотопроводимости в полупроводниках	4	ПК-7, ПК-17
3	4	Исследование шумовых свойств приборов оптоэлектроники	6	ПК-7, ПК-17
4	5	Исследование свойств р-п перехода в приборах	4	ПК-7, ПК-17
		оптоэлектоники		

7.2. Основы волоконной оптики

№ раздела дисциплины	Наименование лабораторных работ	Трудо- емкость	ОК, ПК
3	Исследование состояния поляризации лазерного излучения	(час.) Д	ПК-7, ПК-
	в полимерном волоконном световоде	-	17
3	Исследование эффективности ввода света в волоконный световод	4	ПК-7, ПК- 17
4	Исследование эффективности ввода света в планарный оптический волновод	4	ПК-7, ПК- 17
6	Исследование принципа измерения микроперемещений с использованием поперечного смещения торца многомодового оптоволокна	6	ПК-7, ПК- 17

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (СЕМИНАРЫ)

8.1. Основы оптоэлектроники

№	Раздел дисциплины из табл. 5.1.2	Тематика практических занятий	Трудо- емкость (час.)	Компетенции ОК, ПК
1	1	Ознакомление с основными математическими выражениями и решение задач на тему «Элементы зонной модели твердого тела»	1,5	ПК-7, ПК-17
2	1	Ознакомление с основными математическими выражениями и решение задач на тему «Токопротекание в твердых телах»	1.5	ПК-7, ПК-17
3	2	Ознакомление с основными математическими выражениями и решение задач на тему «Взаимодействие оптического излучения с твердыми телами»	2	ПК-7, ПК-17
4	3	Ознакомление с основными математическими выражениями и решение задач на тему «Фотоэлектрические явления в полупроводниковых приборах: фотопроводимость и фотоэдс»	3	ПК-7, ПК-17
5	4	Ознакомление с основными математическими выражениями и решение задач на тему «Флуктуационные процессы в полупроводниках и полупроводниковых приборах»	3	ПК-7, ПК-17
6	5	Ознакомление с основными математическими выражениями и решение задач на тему «Эмиссия излучения из твердых тел»	3	ПК-7, ПК-17
7	6	Ознакомление с основными математическими выражениями и решение задач на тему «Жидкие кристаллы в оптоэлектронике»	2	ПК-7, ПК-17

8.2. Основы волоконной оптики

No	Раздел дисциплины из	Тематика практических занятий	Трудо-	Компетенции
	табл. 5.1		емкость	ОК, ПК
			(час.)	
1	2	Характеристики поля и поляризация	4	ПК-7, ПК-17
		плоских световых волн		
2	3	Расчет основных параметров	4	ПК-7, ПК-17
		волоконных световодов. Семинар по		
		волоконным световодам.		
3	4	Расчет характеристик интегрально-	2	ПК-7, ПК-17
		оптических компонентов для		
		волоконной оптики. Семинар.		
4	5	Нелинейно-оптические эффекты в	2	ПК-7, ПК-17
		волоконных световодах Семинар.		
5	6	Расчет характеристик волоконно-	4	ПК-7, ПК-17
		оптических датчиков. Семинар.		

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

9.1. Основы оптоэлектроники

№ п/ п	Разделы дисциплины из табл. 5.1	Тематика самостоятельной работы (детализация)	Трудо- емкост ь (час.)	Компе- тенции ОК, ПК	Контроль выполнения работы
1.	1, 2, 3, 4,	Проработка теоретического материала:			Конспект.
	5, 6	1. Зонная диаграмма твердого тела по			Контрольные

				1	T
		теории Блоха. Понятие квазиимпульса.			работы и
		2. Легирование полупроводников,			тестирование.
		принцип детального равновесия. Положение			Решение задач на
		уровня Ферми в полупроводниках.	15	ПК-7,	практике. Опрос на
		3. Закон Бугера – Ламберта, механизмы		ПК-17	лабораторных
		поглощения светав полупроводниках.			занятиях. Экзамен
		4. Физические причины возникновения			
		фотоэффектов в полупроводниках.			
		5. Физические причины возникновения			
		шумов различных типов.			
		6. Генерация оптического излучения			
		твердыми телами. Принцип работы лазера			
		на р-п переходе.			
2.	6	Подготовка к практическим занятиям.			Конспект. Контроль
		Темы для самостоятельного изучения:			ные работы.
		1. Механизм токопротекания в			Экзамен
		полупроводниках при действии	15	ПК-7,	
		электрического поля.		ПК-17	
		2. Дифференциальное сопротивление			
		фотодиода при диффузионном и			
		генерационно-рекомбинационном			
		механизмах поставки носителей заряда.			
		3. Высота барьера в р-п переходе:			
		формирование, зависимость от уровня			
		легирования и собственной концентрации			
		4. Математические методы описания			
		шумов в полупроводниках: понятие			
		дисперсии, автокорреляционной функции,			
		спектральной плотности шума.			
3.	3, 4, 5	Решение задач индивидуальных заданий.			Конспект. Контроль
		Темы расчетных заданий:			ные работы.
		1. Расчет параметров фоторезистора при	12	ПК-7,	Экзамен
		регистрации оптического излучения.		ПК-17	
		2. Расчет параметров фотодиода при			
		регистрации оптического излучения.			
		3. Расчет уровня шума фоторезисторов и			
		фотодиодов в различных режимах их работы			
4.	1, 3. 4, 5	Подготовка к лабораторным работам		ПК-7,	Допуск к
			12	ПК-17	лабораторной
					работе. Экзамен

9.1. Основы волоконной оптики

No	Разделы	Тематика самостоятельной работы	Трудо-	Компе-	Контроль
Π/	дисциплины из	(детализация)	емкость	тенции	выполнения
П	табл. 5.1		(час.)	ОК, ПК	работы
1.	1	Изучение теоретического материала.	2	ПК-7	Зачет.
2.	2	Изучение теоретического материала.	10	ПК-7,	Выступления на
		Подготовка к практическим		ПК-17	семинаре.
		занятиям (семинарам).			Экзамен.
3.	3	Изучение теоретического материала.	10	ПК-7,	Выступления на
		Подготовка к практическим		ПК-17	семинаре. Отчет
		занятиям (семинарам). Подготовка к			по лабораторной
		лабораторной работе.			работе. Экзамен.
4.	4	Изучение теоретического материала.	8	ПК-7,	Выступления на
		Подготовка к практическим		ПК-17	семинаре. Отчет
		занятиям (семинарам). Подготовка к			по лабораторной
		лабораторной работе.			работе. Экзамен.
5.	5	Изучение теоретического материала.	4	ПК-7,	Выступления на
		Подготовка к практическим		ПК-17	семинаре.
		занятиям (семинарам).			Экзамен.

6.	6	Изучение теоретического материала.	10	ПК-7,	Выступления на
		Подготовка к практическим		ПК-17	семинаре. Отчет
		занятиям (семинарам). Подготовка к			по лабораторной
		лабораторной работе.			работе. Экзамен.

10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ)

Курсовые проекты (работы) учебным планом не предусмотрены

11. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА

МЕТОДИКА ТЕКУЩЕГО КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Осуществляется в соответствии с **Положением о порядке использования рейтинговой системы для оценки успеваемости студентов** (приказ ректора 25.02.2010 № 1902) и основана на бально- рейтинговой системе оценки успеваемости , действующей с 2009 г., которая включает **текущий** контроль выполнения элементов объема дисциплины по элементам контроля с подведением текущего рейтинга (раздел 6).

Правила формирования пятибалльных оценок за каждую контрольную точку (КТ1, КТ2) осуществляется путем округления величины, рассчитанной по формуле:

$$KTx\big|_{x=1,2} = \frac{(Cymma_баллов,_набранная_\kappa_KTx)*5}{Tpeбyemas_cymma_баллов_по_балльной_раскладке}\,.$$

После окончания семестра студент, набравший менее 50 баллов, считается неуспевающим, не получившим зачет. Студент, выполнивший все запланированные лабораторные работы, и т.д. и набравший сумму 50 и более баллов, получает зачет «автоматом»..

Таблица 11.1 Распределения баллов в течение семестра

Элементы учебной деятельности	Максимальный балл на 1-ую контрольную точку с начала семестра	Максимальн ый балл за период между 1КТ и 2КТ	Максимальны й балл за период между 2КТ и на конец семестра	Всего за семестр
Посещение лекций	16			16
Тестовый контроль		30		30
Выполнение лабораторных работ		20	20	40
Компонент своевременности		7	7	14
Итого максимум за период:	16	57	27	100
Нарастающим итогом	16	73	100	

Таблица 11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ:

12.1. Основная литература

- 1. В.Н. Давыдов. Физические основы оптоэлектроники. Учебное пособие: Томский государственный университет систем управления и радиоэлектроники (Томск), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 139с. Режим доступа: http://edu.tusur.ru/training/publications/3716.
- 2. Шандаров В. М. Волоконно-оптические устройства технологического назначения: [Электронный ресурс]: Учебное пособие. Томск: ТУСУР. 2013. 198 с. Режим доступа: http://edu.tusur.ru/training/publications/3709

12.2. Литература дополнительная

- 1. В.Н. Давыдов В.Н. Физические основы оптоэлектроники. Учебное пособие. ТМЦ ДО, 2004. 135 с. (Кол-во экз. 14)
 - 2. Ю.Р. Носов. Оптоэлектроника. М., Наука, 1989, 360 с. (Кол-во экз.- 12).
- 3. Т.Мосс, Г.Баррел, Б.Эллис. Полупроводниковая оптоэлектроника. М., Мир, 1976. 430 с. (Кол-во экз 3).
- 4. Игнатов А.Н. Оптоэлектроника и нанофотоника [Электронный ресурс]: учебное пособие. СПб.: Лань, 2011.- 528 с. Режим доступа http://e.lanbook.com/view/book/690

12.3. Перечень методических указаний по практическим занятиям и лабораторным работам

- 1. Давыдов В.Н. Измерение ширины запрещенной зоны полупроводника методом температурного сканирования. Учебно-методическое пособие к лабораторной работе. Томск: ТУСУР, 2013. 10 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 10 с. Режим доступа: http://edu.tusur.ru/training/publications/3559.
- 2. Давыдов В.Н. Исследование фотопроводимости в полупроводниках. Учебнометодическое пособие к лабораторной работе. Томск: ТУСУР, 2013. 26 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 26 с. Режим доступа: http://edu.tusur.ru/training/publications/3558.
- 3. Давыдов В.Н. Исследование шумовых свойств приборов оптоэлектроники. Учебнометодическое пособие к лабораторной работе. Томск, ТУСУР. 2013. 15 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013 15 с. Режим доступа: http://edu.tusur.ru/training/publications/3561.
- 4. Давыдов В.Н. Исследование свойств p-n перехода в приборах оптоэлектроники. Учебно-методическое пособие к лабораторной работе. Томск, ТУСУР. 2013. 22 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 22 с. Режим доступа: http://edu.tusur.ru/training/publications/3560.
- 5. Шандаров В. М. Исследование состояния поляризации лазерного излучения в полимерном волоконном световоде: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") 2013. 9 с., Режим доступа: http://edu.tusur.ru/training/publications/3709

- 6. Шандаров В. М. Исследование эффективности ввода света в волоконный световод: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") Томск: ТУСУР. 2013. 8 с., Режим доступа: http://edu.tusur.ru/training/publications/3705
- 7. Карпушин П. А., Шандаров В. М. Исследование принципа измерения микроперемещений с использованием поперечного смещения торца многомодового оптоволокна: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") Томск: ТУСУР. 2013. 8 с., Режим доступа: http://edu.tusur.ru/training/publications/3706
- 8. Кущ Г. Г., Шандаров В. М. Исследование эффективности ввода света в планарный оптический волновод: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") Томск: ТУСУР. 2013. 11 с., Режим доступа: http://edu.tusur.ru/training/publications/3703
- 9. Давыдов В.Н. Физические основы оптоэлектроники. Учебно-методическое пособие для самостоятельной работы студентов с решениями типовых задач и задачами для самостоятельной работы. Томск, ТУСУР. 2013. 112 с. [Электронный ресурс]: Давыдов В.Н. Физические основы оптоэлектроники. Учебно-методическое пособие для самостоятельной работы студентов с решениями типовых задач и задачами для самостоятельной работы. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. Текстовые дан. Томск: ТУСУР, 2013. 112с. Режим доступа: http://edu.tusur.ru/training/publications/3562.
- 10. Шандаров В. М. Волоконно-оптические устройства и приборы [Электронный ресурс]: Учебно-методическое пособие по практическим занятиям и самостоятельной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи"). Томск: Томск. гос. унт систем упр. и радиоэлектроники, 2013. 60 с. Режим доступа: http://edu.tusur.ru/training/publications/3712

13. Материально-техническое обеспечение дисциплины

13.1 Общие требования

1. Компьютерный класс, оборудованный компьютерами класса Pentium II и выше, включенный в сеть Internet.

13.2 Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

- 2. Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения.
- 3. При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема-передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.
- 4. При обучении студентов с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

5. При обучении студентов с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема-передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ

Проректор по учебной работе

	П.Е. Троян
	«»2017 г.
ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО У	учебной дисциплине
Основы оптоэлектроники и н	волоконной оптики
Уровень основной образовательной программы <u>: БАКАЛА</u>	<u> ВВРИАТ</u>
Направление(я) подготовки (специальность): 11.03.02 «ИН	<u>ІФОКОММУНИКАЦИОННЫЕ</u>
Профиль(и): ОПТИЧЕСКИЕ СИСТЕМЫ И СЕТИ СВЯЗИ	<u>I</u>
Форма обучения <u>ОЧНАЯ</u>	
Факультет <u>РТФ (РАДИОТЕХНИЧЕСКИЙ</u>)	
Кафедра <u>СВЧиКР (СВЕРХВЫСОКОЧАСТОТНОЙ И КВА</u>	<u>АНТОВОЙ РАДИОТЕХНИКИ)</u>
Курс 3	еместр <u>5</u>
Учебный план набора <u>2</u>	<u> 2016</u> года.
Экзамен 5 семестр	

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «Основы физической оптики» и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной компетенций приведен в таблице 1

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ПК-7	готовность к изучению научно-технической информации, отечественного и зарубежного опыта по тематике проекта	Должен знать фундаментальные положения теории твердых тел, основные законы и соотношения оптоэлектроники, волновой оптики и оптики направляющих диэлектрических структур; основы физики формирования электрических и оптических свойств твердых тел, физики расмистейства пределения ответния структур; основно должения свойств твердых тел, физики ответния структур; основные пределения пре
ПК-17	способность применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств электросвязи и информатики	взаимодействия света со средой и основы нелинейной оптики в приложении к оптическим направляющим структурам; основы технологии производства оптоэлектронных компонентов, оптических волокон и волноводных элементов; устройство, принципы работы и характеристики оптоэлектронных и волоконно-оптических приборов. Должен уметь объяснять физические эффекты, лежащие в основе работы оптоэлектронных и волоконно-оптических компонентов и приборов; применять на практике известные методы исследования оптоэлектронных и волоконно-оптических элементов и устройств; выполнять расчеты, связанные с определением параметров и характеристик оптоэлектронных и волоконно-оптических компонентов и устройств; проводить компьютерное моделирование и проектирование оптоэлектронных и волоконно-оптических компонентов и устройств, а также иметь представление о методах компьютерной оптимизации таких устройств; пользоваться справочными данными по оптоэлектронным, волоконно-оптическим компонентам и приборам при проектировании инфокоммуникационных систем и сетей связи, сопоставляя особенности характеристик таких компонентов и приборов; Должен владеть навыками чтения и изображения схем оптоэлектронных и оптических приборов, систем и сетей на основе современной элементной базы оптоэлектронных и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптических приборов и с контрольно-

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

Показатели и критерии		Знать	Уметь	Владеть	
Отлично уровень)	(высокий	Обладает фактическим и теоретическим знанием в пределах изучаемой области с пониманием границ применимости.	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем.	Контролирует работу, проводит оценку, совершенствует действия работы.	
Хорошо уровень)	(базовый	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области.	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования.	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем.	
Удовлетвор (пороговый		Обладает базовыми общими знаниями.	Обладает основными умениями, требуемыми для решения простых задач.	Работает при прямом наблюдении.	

2. Реализация компетенций

1. Компетенция ПК-7

ПК-7: готовность к изучению научно-технической информации, отечественного и зарубежного опыта по тематике проекта.

Для формирования компетенции необходимо осуществить ряд этапов.

Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Таблица 3-Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание	Фундаментальные положения	Объяснять физические	Навыками чтения и
	теории твердых тел, основные	эффекты, лежащие в	изображения схем
этапов	законы и соотношения опто-	основе работы оптичес-	оптических приборов и
	электроники, волновой оптики	ких, оптоэлектронных и	систем на основе
	и оптики направляющих	волноводно-оптических	современной элементной
	диэлектрических структур;	элементов и устройств;	базы оптики, оптоэлект-
	основы физики формирования	применять на практике	роники и волноводной
	электрических и оптических	известные методы экспе-	оптики.
	свойств твердых тел, физики	риментального исследо-	
	взаимодействия света со	вания оптоэлектронных,	
	средой и основы нелинейной	волноводно-оптических	
	оптики в приложении к опти-	элементов и устройств;	
	ческим направляющим струк-	выполнять расчеты, свя-	
	турам; основы технологии	занные с определением	
	производства оптоэлектрон-	параметров и характерис-	
	ных компонентов, оптических	тик оптических,	
	волокон и волноводных	оптоэлектронных, и	
	элементов.	волноводно-оптических	
		компонентов и устройств.	

Виды занятий	Лекции. Практические занятия.	Лабораторные работы. Практические занятия. Самостоятельная работа студентов.	Практиче Самос	орные работы. еские занятия. тоятельная а студентов.
Используемые средства оценивания	Задачи. Экзамен.	Задачи. Оформление отчетности и защита лабораторных работ.	Защита работ. Экзамен.	лабораторных

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 1 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Знает фундаментальные положения теории твердых тел, основные законы и соотношения оптоэлектроники, волновой оптики и оптики направляющих диэлектрических структур; основы физики формирования электрических и оптических свойств твердых тел, оптики ограниченных световых пучков, теории оптических волноводов; основы физики взаимодействия света со средой и нелинейной оптики; принципы построения, особенности и характеристики оптических и интегрально-оптических элементов и приборов.	Умеет объяснять физику работы оптических, оптоэлектронных и волноводно-оптических элементов и устройств; применять методы их экспериментального исследования; выполнять расчеты по определению параметров и характеристик оптических, оптоэлектронных и волноводно-оптических компонентов и устройств.	Свободно владеет навыками чтения и изображения схем оптоэлектронных, оптических приборов и систем на основе современной элементной базы оптики, оптоэлектроники и волноводной оптики.
Хорошо (базовый уровень)	Понимает связи между различными понятиями в области физической оптики. Понимает принципы построения оптических, оптоэлектронных и волноводно-оптических элементов и приборов.	Умеет выполнять поиск информации в области оптики, используя ресурсы отечественных и зарубежных источников. Умеет самостоятельно выбирать методы решения задач в области оптоэлектронки и физической оптики.	Владеет навыками работы с литературными источниками, связанными с оптоэлектронными и оптическими явлениями.
Удовлетвори- тельно (пороговый уровень)	Дает определения основных понятий в области оптоэлектроники и оптики.	Умеет работать со справочной литературой; умеет представлять результаты своей работы.	Может корректно представить информацию, связанную с оптоэлектронными и оптическими явлениями.

2.2. Компетенция ПК-17

ПК-17: способность применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств электросвязи и

информатики.

Для формирования компетенции необходимо осуществить ряд этапов.

Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 5.

Таблица 5-Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Фундаментальные положения теории твердых тел, основные законы и соотношения волновой теории направляющих структур; характеристики интегрально-оптических элементов и приборов.	Выполнять расчеты характеристик оптоэлектронных, волноводно- оптических устройств; проводить компьютерное моделирование и проектирование оптических, оптоэлектронных и волноводно-оптических приборов; иметь представление о методах компьютерной оптимизации их характеристик; пользоваться справочными данными по оптическим, оптоэлектронным материалам и элементам при проектировании оптических приборов и приборов	Навыками проектирования и компьютерного моделирования оптических, опто- электронных элементов и устройств различного назначения; навыками практической работы с лабораторными образцами оптических, оптоэлектронных и волноводнооптических элементов, с оптическими и оптоэлектронными приборами и контрольно-измерительной аппаратурой.
Виды занятий Используемые	Лекции. Практические занятия. Задачи.	оптоэлектроники. Лабораторные работы. Практические занятия. Самостоятельная работа студентов. Оформление отчетности и	Лабораторные работы. Самостоятельная работа студентов. Защита лабораторных
средства оценивания	Экзамен.	защита лабораторных работ.	работ. Экзамен.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Знает фундаментальные положения теории твердых тел, основные законы и соотношения волновой теории направляющих оптических структур; принципы построения, особенности и характеристики оптоэлектронных и интегрально-оптических элементов и приборов.	Умеет проводить компьютерное моделирование и проектирование оптических, оптоэлектронных и волноводно-оптических элементов и устройств; имеет представление о методах компьютерной оптимизации их характеристик; умеет пользоваться справочными данными по оптическим и оптоэлектронным материалам и элементам при проектировании оптических и оптоэлектронных приборов.	Свободно владеет навыками чтения и изображения схем оптических приборов и систем; навыками проектирования и компьютерного моделирования оптических и оптоэлектронных элементов и устройств; навыками работы с реальными оптическими, оптоэлектронными приборами и с контрольноизмерительной аппаратурой.
Хорошо (базовый уровень)	Понимает связи между различными понятиями в области оптики и оптоэлектроники. Имеет представление о принципах построения оптоэлектронных и интегральнооптических элементов и приборов.	Имеет представление о методах компьютерной оптимизации характеристик оптических и оптоэлектронных элементов и приборов; умеет пользоваться справочными данными по оптическим и оптоэлектронным материалам и элементам при проектировании оптических и оптоэлектронных приборов. Умеет самостоятельно определять методы решения задач проектирования.	Владеет навыками работы с литературными источниками в области оптоэлектроники и оптики.
Удовлетвори тельно (пороговый уровень)	Имеет представление о принципах построения оптоэлектронных и интегрально-оптических элементов и приборов, об основных понятиях в области оптики и оптоэлектроники.	Умеет работать со справочной литературой; умеет представлять результаты своей работы.	Может корректно представить знания и информацию, связанную с оптическими и оптоэлектронными явлениями.

3.Типичные контрольные задания

Для реализации вышеперечисленных задач обучения используются следующие материалы:

 контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

ЧАСТЬ 1. «ОСНОВЫ ОПТОЭЛЕКТРОНИКИ» дисциплины.

Контрольные задачи (типичные) по элементарным знаниям и практическим навыкам по темам:

3.1. Тема «Элементы зонной теории твердых тел»

Задача 1. Вычислить положение уровня Ферми в кремнии относительно потолка валентной зоны, если известно, что данный кристалл находится при температуре T = 300~K и содержит $1.4 \cdot 10^{13}$ атомов фосфора в 1 см³. При решении учесть, что атомы фосфора дают энергетический уровень донорного типа, который лежит в запрещенной зоне практически точно по дну зоны проводимости.

Решение:

Для определения энергетического положения уровня Ферми в заданных условиях необходимо воспользоваться выражением:

$$F = E_i + \frac{3}{4}kT \cdot \ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot \ln\left(\frac{n_i}{n_0}\right).$$

Здесь равновесная концентрация n_0 задается донорной примесью:

$$n_0 = N_d \left(1 - f(E_C) \right) = N_d \cdot \exp\left(\frac{E_C - F}{kT} \right) / \left[1 + \exp\left(\frac{E_C - F}{kT} \right) \right].$$

Строго говоря, имеем трансцендентное уравнение относительно F

$$F = E_i + \frac{3}{4}kT \cdot \ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot \ln\left(\frac{n_i}{N_d}\right) - kT \cdot \ln\left(1 + \exp\left(\frac{F - E_C}{kT}\right)\right),$$

которое можно решить приближенным методом, если $F - E_C < 3kT$. Это означает, что если донорный уровень находится выше уровня Ферми на единицы kT, то он полностью ионизован. Тогда последнее слагаемое в выражении (1) можно разложить в ряд по малому параметру

$$\ln\left(1 + \exp\left(\frac{F - E_C}{kT}\right)\right) \approx \exp\left(\frac{F - E_C}{kT}\right) < \exp(-3) \approx \frac{1}{20} = 0.05$$

и увидеть, что в рассматриваемом случае $\ln(1+\delta)$ можно с высокой степенью точности считать равным $\ln(1)$, что дает нуль. В результате приходим к следующему выражению для положения уровня Ферми в легированном полупроводнике:

$$F \approx E_i + \frac{3}{4}kT \cdot \ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot \ln\left(\frac{n_i}{N_d}\right).$$

Если считать положение уровня Ферми в электроновольтах (эВ), то это выражение следует разделить на заряд электрона:

$$F \approx E_i + \frac{3}{4} \cdot \frac{kT}{q} \cdot \ln \left(\frac{m_p^*}{m_n^*} \right) - \frac{kT}{q} \cdot \ln \left(\frac{n_i}{N_d} \right),$$

где E_i - задано в электроновольтах. Подстановка численных значений в выражение дает

$$F \approx 0.56 + \frac{3}{4} \cdot \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot \ln \left(\frac{0.16}{0.19} \right) - \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot \ln \left(\frac{1.4 \cdot 10^{10}}{1.4 \cdot 10^{13}} \right) \approx$$

$$\approx 0.56 + 1.9 \cdot 10^{-2} \cdot \ln \left(\frac{16}{19} \right) + 0.078 \cdot \ln(10) \approx 0.56 - 0.019 \cdot 0.15 + 0.078 \cdot 2.3 \approx 0.74 \quad (9B).$$

3.2. Тема «Взаимодействие оптического излучения с твердыми телами»

Задача 1. Какая доля от падающей световой интенсивности поглощается в слое полупроводника между координатами $x_1 = 10^{-6}$ см до $x_2 = 2 \cdot 10^{-6}$ см, отсчитанными от освещаемой поверхности, если длина свободного пробега фотона составляет 10^{-8} м?

Решение:

За основу решения задачи возьмем закон Бугера — Ламберта, согласно которому интенсивность оптического излучения на расстоянии x от освещаемой поверхности I(x) уменьшается с ростом глубины по экспоненциальному закону:

$$I(x) = (1 - R) \cdot I_0 \exp(-\alpha x),$$

(где R - коэффициент отражения излучения от поверхности, а α - коэффициент поглощения, который обратно пропорционален длине свободного пробега фотона ℓ_{ϕ} :

$$\alpha = 1/\ell_{\phi}$$
.

Значит, в точке $x_1 = 10^{-6}$ см интенсивность света будет равна

$$I(x_1) = I_0 \exp(-\alpha x_1).$$

Эта доля интенсивности от падающего на полупроводник излучения, пройдя слой вещества до точки $x_2 = 2 \cdot 10^{-6}$ см, уменьшится до

$$I(x_2) = I_0 \exp(-\alpha x_1) \cdot \exp(-\alpha x_2) = I_0 \exp(-\alpha (x_1 + x_2)).$$

Следовательно, в слое толщиной $(x_2 - x_1)$ поглотится интенсивность

$$\Delta I(x_2 - x_1) = I(x_1) - I(x_2) = I_0 \exp(-\alpha x_1) - I_0 \exp(-\alpha (x_1 + x_2)) = I_0 \exp(-\alpha x_1) \cdot [1 - \exp(-\alpha x_2)]$$

или в относительных единицах

$$\frac{\Delta I(x_2 - x_1)}{I_0} = \exp(-\alpha x_1) \cdot \left[1 - \exp(-\alpha x_2)\right].$$

Подставляя численные значения в сантиметрах, получим:

$$\frac{\Delta I(x_2 - x_1)}{I_0} = \exp\left(-10^6 \cdot 10^6\right) \left[1 - \exp\left(-10^6 \cdot \left(2 \cdot 10^{-6} - 10^6\right)\right)\right] =$$

$$= \exp(-1)\left[1 - \exp(-1)\right] = \frac{1}{\exp(1)} \left[\frac{\exp(1) - 1}{\exp(1)}\right] = \frac{\exp(1) - 1}{(\exp(1))^2} \approx \frac{2.7 - 1}{2.7 \cdot 2.7} = \frac{1.7}{7.3} \approx 0.23 .$$

Ответ на поставленный в задаче вопрос таков: в указанном слое поглотится 23% от палающей интенсивности.

3.3. Тема «Фотоэлектрические явления в полупроводниках»

Задача 1. Определить величину фотопроводимости кремниевого образца размерами $(1\times1\times5)$ cm^3 при его освещении оптическим излучением интенсивностью $I_0=10^{12}$ $\kappa вант/(cm^2\cdot c)$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta=0.5$,

коэффициент поглощения излучения составляет $\alpha = 10^6$ см⁻¹, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^5$ Γu . Освещение проводится с широкой стороны образца, а регистрирующие контакты припаяны к узким торцам.

Решение:

В данной задаче необходимо определить изменение проводимости всего образца под действием оптического излучения, а не единичного объема, как это рассмотрено в курсе лекций. Поэтому выразим изменение проводимости всего образца, если известно изменение удельной проводимости. Пусть рассматриваемый образец имеет длину L в направлении протекания тока и площадь омических контактов к образцу S и удельную проводимость σ . Если при освещении удельная проводимость изменяется на величину $\Delta \sigma$, то изменение проводимости всего образца будет равно

$$\Delta G = \Delta \sigma \cdot \frac{S}{L}.$$

Именно это выражение определяет искомую неизвестную величину, в котором изменение удельной проводимости есть удельная фотопроводимость. Последняя величина определяется выражением, приведенном в лекции, в котором неизвестными величинами являются скорость генерации неравновесных электронов и дырок, а также время релаксации фотопроводимости. Используем выражение для вычисления времени релаксации фотопроводимости:

$$\tau_{\phi n} = \frac{\left(\mu_n + \mu_p\right) \cdot \tau_n \cdot \tau_p}{\mu_n \tau_p + \mu_p \tau_n},$$

в котором все величины являются справочными (см. Приложение к учебнометодическому пособию). Подставив справочные значения подвижностей электронов и дырок, а также времен их жизни ($\tau_n = \tau_p = 10^{-3} c$), получим:

$$\tau_{\phi n} = \frac{(\mu_n + \mu_p) \cdot \tau_n \cdot \tau_p}{\mu_n \tau_p + \mu_p \tau_n} = \frac{(\mu_n + \mu_p) \cdot 10^{-3}}{\mu_n + \mu_p} = 10^{-3} c.$$

Следующим шагом определим скорость генерации неравновесных носителей заряда с учетом коэффициента отражения излучения от поверхности кремния

$$R = \left(\frac{n-1}{n+1}\right)^2 = \left(\frac{\sqrt{\varepsilon_{Si}} - 1}{\sqrt{\varepsilon_{Si}} + 1}\right)^2.$$

Подстановка в данное выражение значения относительной диэлектрической проницаемости кремния дает следующее значение коэффициента отражения

$$R = \left(\frac{\sqrt{11.7} - 1}{\sqrt{11.7} + 1}\right)^2 \approx \left(\frac{3.4 - 1}{3.4 + 1}\right)^2 = \left(\frac{2.4}{4.4}\right)^2 \approx 0.25.$$

Скорость генерации неравновесных носителей заряда - число электронно-дырочных пар, генерируемых светом в единицу времени в единичном объеме, равна

$$g = \eta \cdot \alpha \cdot (1 - R) \cdot I_0 = 0.25 \cdot 10^6 \cdot 0.5 \cdot 10^{12} \approx 1.25 \cdot 10^{17} \, nap/c$$
.

Теперь найдем фотопроводимость единичного объема

$$\Delta\sigma = \frac{q(\mu_n + \mu_p) \cdot g \cdot \tau_{\phi n}}{1 + \omega^2 \cdot \tau_{\phi n}^2} = \frac{1.6 \cdot 10^{-19} (1450 + 480) \cdot 1.25 \cdot 10^{17} \cdot 10^{-3}}{1 + 4\pi^2 \cdot 10^{10} \cdot 10^{-6}} \approx 10^{-7} \ Om^{-1} \cdot cm^{-1}.$$

Здесь максимальное значение фотопроводимости, достигаемое на низкой частоте модуляции, равно $0.7 \cdot 10^{-1} \ Om^{-1} cm^{-1}$, что видно по значению числителя выражения. Отличный от единицы знаменатель указывает на проявление инерционности полупроводника. Резкое снижение значения фотопроводимости на заданной частоте

связано с высокой частотой модуляции излучения (см. знаменатель выражения) по сравнению с частотой среза.

Фотопроводимость образца определяется удельной фотопроводимостью и размерами образца

$$\Delta G = \Delta \sigma \cdot \frac{S}{L} = 2 \cdot 10^{-7} \cdot \frac{1 \times 1}{5} = 4 \cdot 10^{-8} \ Om^{-1}.$$

Таким образом, ответ на поставленный вопрос таков: фотопроводимость кремниевого образца размерами $(1\times1\times5)$ $c M^3$ при освещении высочастотно-модулированным излучением с широкой стороны образца равна $4\cdot10^{-8}$ $O M^{-1}$.

Тема 3.4. «Флуктуационные процессы в полупроводниках»

Задача 1. Рассчитать напряжение суммарного шума на частоте f=1 $\kappa \Gamma u$ RC - цепи, составленной из резистора величиной $R=2\cdot 10^5$ O_M и параллельной ему емкости $C=5\cdot 10^6$ $n\Phi$, если к цепи приложено постоянное напряжение величиной V=2 B, а температура окружающей среды равна T=300 K.

Решение:

В данной задаче полный шум цепи слагается из теплового и дробового шума. Другая особенность задачи: наличие емкости, которая делает шум частотно-зависимым. Поэтому за основу расчета следует взять выражение, в котором вместо сопротивления R следует взять реальную часть импеданса цепи:

$$\sqrt{\overline{U_{uu}^2}} = \sqrt{\overline{U_{uu\ men\pi}^2} + \text{Re}(Z)^2 \cdot \overline{I_{uu\ \partial p}^2}} = \sqrt{4kT\,\text{Re}(Z) + \text{Re}(Z)^2 \cdot 2q \cdot I_0} \ .$$

Реальную часть импеданса цепи можно найти, используя выражение для параллельно соединенных постоянного сопротивления и емкости

$$Z = \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{R}{1 + j\omega CR} = \frac{R \cdot (1 - j\omega CR)}{(1 + j\omega CR)(1 - j\omega CR)} = \frac{R \cdot (1 - j\omega CR)}{1 + \omega^2 (CR)^2} = \frac{R}{1 + \omega^2 (CR)^2} - j\frac{\omega CR \cdot R}{1 + \omega^2 (CR)^2} = \frac{R}{1 + \omega^2 \tau^2} - j\frac{\omega \tau \cdot R}{1 + \omega^2 \tau^2}.$$

Здесь обозначено: $\tau = CR$ - время перезарядки цепи. Следовательно, реальная часть импеданса цепи равна:

$$\operatorname{Re}(Z) = \frac{R}{1 + \omega^2 \tau^2}$$
.

Подставим в выражение для средне-квадратичного отклонения флуктуации напряжения найденную реальную часть импеданса и найдем уровень шума

$$\sqrt{\overline{U_{uu}^{2}}} = \sqrt{\frac{4kTR}{1 + \omega^{2}\tau^{2}} + 2q \cdot I_{0} \frac{R^{2}}{\left(1 + \omega^{2}\tau^{2}\right)^{2}}} = \sqrt{\left(\frac{R}{1 + \omega^{2}\tau^{2}}\right) \cdot \left(4kT + 2q\frac{V}{1 + \omega^{2}\tau^{2}}\right)}.$$

Подставляя численные значения констант и параметров, получим

$$\begin{split} &\sqrt{\overline{U_{uu}^2}} = \sqrt{\frac{2 \cdot 10^5}{1 + 4\pi^2 10^6 \cdot 4 \cdot 10^{10} \cdot 25 \cdot 10^{-18}} \cdot \left(4 \cdot 1.38 \cdot 10^{-23} \cdot 300 + 2 \cdot 1.6 \cdot 10^{-19} \frac{2}{1 + 4\pi^2}\right)} \approx \\ &\approx \sqrt{\frac{2 \cdot 10^5}{1 + 40} \left(1.7 \cdot 10^{-19} + 3.2 \cdot 10^{-19} \frac{2}{1 + 40}\right)} = \sqrt{5 \cdot 10^{-3} \cdot 10^{-19} \left(1.7 + \frac{6.4}{41}\right)} \approx 30 \cdot 10^{-9} \ B / \Gamma u^{1/2}. \end{split}$$

Таким образом, амплитуда шума RC – цепи на частоте 1 $\kappa \Gamma u$ при действии постоянного напряжения равна около 30 $\mu B / \Gamma u^{1/2}$.

3.5. Тема «Эмиссия оптического излучения из полупроводников»

Задача 1. Каким должен быть коэффициент усиления излучения из области примесного поглощения (коэффициент поглощения $\alpha = 10^3 cm^{-1}$) в твердом теле длиной $L = 2.5 \cdot 10^{-5} cm$ и торцами в виде отражающих зеркал, коэффициент отражения одного из них $R_1 = 1$, если через второе зеркало выводится 5% генерируемого излучения.

Решение:

Эта задача может быть решена с использованием выражения для порогового коэффициента усиления в лазерах при известных значениях коэффициента поглощения излучения α , обоих коэффициентов отражения зеркал R_1 , R_2 и длины кристалла в направлении усиления света L:

$$g > \alpha - \frac{1}{2L} \ln(R_1 R_2).$$

Из условия задачи следует, что коэффициент отражения света вторым зеркалом $R_2 = 0.95$. Поэтому с использованием формул разложения логарифма вблизи единичного значения аргумента получим:

$$g > 10^{3} - \frac{1}{5 \cdot 10^{-5}} \ln(1 \cdot 0.95) = 10^{3} - \frac{1}{5 \cdot 10^{-5}} \ln(1.0 - 0.05) \approx$$

$$\approx 10^{3} - \frac{1}{5 \cdot 10^{-5}} (-0.05) = 10^{3} + \frac{1}{5 \cdot 10^{-5}} 0.05 = 10^{3} + \frac{5}{5} \cdot 10^{3} = 2 \cdot 10^{3} \text{ cm}^{-1}.$$

Таким образом, коэффициент усиления твердого тела должен быть больше $2 \cdot 10^3 c M^{-1}$.

3.6. Тема «Жидкие кристаллы в оптоэлектронике»

Задача 1. Определить величину электрического поля, при котором распрямляется холестерическая спираль жидкого кристалла, если известно, что величина оптической анизотропии $\Delta \varepsilon = 4.2$, шаг холестерической спирали в отсутствии электрического поля составлял $p_0 = 0.50$ мкм, а модуль упругости равен $K = 1.7 \cdot 10^{-6}$ дин.

Решение:

Для решения этой задачи воспользуемся выражением для напряжения распрямления спирали холестерика

$$E_p = \left(\frac{\pi^2}{2p_0}\right) \cdot \left(\frac{4\pi \cdot K}{\Delta \varepsilon}\right)^{1/2}.$$

Решая задачу в системе СГСЕ, выразим шаг холестерической спирали в сантиметрах:

$$p_0 = 0.50 \cdot 10^{-4} = 5 \cdot 10^{-5} \text{ cm}.$$

Подставим в исходное выражение параметры холестерика, тогда получим:

$$E_p \approx \frac{10}{2 \cdot 5 \cdot 10^{-5}} \cdot \sqrt{5.1} \cdot 10^{-3} = 2.4 \cdot 10^2 \ e \delta. \ CFCE$$
.

Переведем полученный результат в систему СИ, разделив его на переводной коэффициент, равный $3 \cdot 10^{-3}$. В итоге ответ на поставленный вопрос будет таков: величина распрямляющего холестерическую спираль электрического поля равна $8 \cdot 10^4 \ B/cm$.

ЧАСТЬ 2. «ВОЛНОВАЯ ОПТИКА» дисциплины.

Контрольные задачи (типичные) по элементарным знаниям и практическим навыкам по темам:

3.1. Тема: Основные положения физической оптики.

Задача 1.

Запишите выражение для напряженности электрического поля плоской световой волны, распространяющейся в среде вдоль оси Z, если в плоскости XOY фазовый сдвиг между компонентами вектора E вдоль осей X и Y составляет 90° , а отношение их амплитуд $E_{mx}/E_{my}=0,5$.

Решение:

Согласно условиям задачи, плоская световая волна распространяется вдоль оси z. Тогда, исходя из поперечной структуры ее поля, вектор \overline{E} может располагаться лишь в плоскости XOY и имеет составляющие E_x и E_y . Изменение величины напряженности электрического поля плоской световой волны во времени и пространстве определяется выражением:

 $\overline{E} = [\overline{x}_0 E_{mx} \cos(\omega t - kz) + \overline{y}_0 E_{my} \cos(\omega t - kz - \varphi)]$. Поскольку фазовый сдвиг между составляющими вектора \overline{E} вдоль этих осей равен 90°, а $E_{my} = 2E_{mx}$ то это соотношение принимает окончательный вид:

$$\overline{E} = [\overline{x}_0 E_{mx} \cos(\omega t - kz) + \overline{y}_0 \cdot 2E_{mx} \sin(\omega t - kz)] =$$

$$= E_{mx} \cdot [\overline{x}_0 \cos(\omega t - kz) + 2\overline{y}_0 \sin(\omega t - kz)]$$

Таким образом, рассматриваемый случай соответствует плоской световой волне с эллиптической поляризацией, причем большая ось эллипса параллельна оси Y (поскольку $E_{my}=2E_{mx}$).

Задача 2.

На пленочный поляроид падает линейно поляризованный световой пучок мощностью 1 мВт, плоскость поляризации света отклонена от направления главной оси поляроида на 30°. Какова величина световой мощности, прошедшей через поляризатор, если поляризующий материал заключен между двумя стеклянными пластинками (для стекла n=1,51), а френелевскими отражениями на границе между стеклом и этим материалом можно пренебречь?

Решение:

Уменьшение мощности световой волны, прошедшей через поляроид, обусловлено в реальных элементах эффектами частичного отражения света на границах раздела сред с разными свойствами, поглощения света в материале структуры, а также собственно поляризующим действием такого элемента.

Для наглядности представим схему данного элемента (рис. 1.2). Частичное отражение света может наблюдаться здесь на границах раздела 1 – 4 (отмечены

стрелками). Согласно условиям задачи, можно пренебречь эффектом отражения света на границах 2 и 3. Поскольку условиями не определена величина оптического поглощения в материале поляроида, им также пренебрегаем. В итоге, для определения прошедшей световой мощности учитываем эффект частичного отражения света на входной и выходной границах структуры (границы 1 и 4), а также отклонением плоскости поляризации света от главного направления поляроида. определяемым законом Малюса.

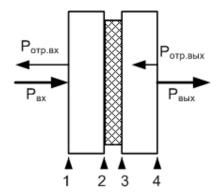


Рис. 1.2. Схема пленочного поляроида.

Поскольку коэффициент отражения света (по интенсивности) на границе диэлектрической

среды с показателем преломления n и воздуха определяется соотношением $r = \left(\frac{n-1}{n+1}\right)^2$,

то интенсивность (или мощность) прошедшего пучка при полном пропускании поляроида была бы равна $P_{np} = P_{na\partial} \cdot (1-\mathbf{r})(1-\mathbf{r}) = P_{na\partial} \cdot (1-\mathbf{r})^2$. Учет поворота главной оси поляроида относительно плоскости поляризации световой волны приводит это соотношение к виду:

$$P_{np} = P_{na\partial} \cdot (1 - \mathrm{r})^2 \cdot \cos^2 \theta$$
, где θ =30°. Для n=1,51 в итоге получаем:

r=0,0413; $P_{np}=1\cdot(1-0,0413)^2\cdot\cos^2(30^\circ)=0,9178\cdot0,75=0,6884 \text{ MBT}.$

Таким образом, мощность прошедшего через поляроид светового пучка в данном случае составляет 0,6884 мВт.

3.2. Тема: Оптика ограниченных световых пучков

Задача 1.

Круговой гауссов пучок имеет полуширину перетяжки $w_0=10$ мкм. Найдите полуширину пучка на расстоянии 10 м от области перетяжки, если длина волны света $\lambda=1$ мкм.

Решение:

Используем выражение для связи полуширины пучка в произвольном сечении с его шириной в области перетяжки:

$$w^2(z) = w_0^2 \left(1 + \frac{z^2}{z_0^2}\right)$$
 и соотношение для продольного размера перетяжки $z_0 = \frac{\pi w_0^2}{\lambda}$.

Комбинируя их, получим: $w(z) = w_0 \left(1 + \frac{z^2 \lambda^2}{\pi^2 w_0^4}\right)^{1/2}$. И, подставляя сюда заданные параметры, получим $w=w_0(1+10^9)^{0.5}=3.2$ см.

3.3. Тема: Распространение световых волн в материальных средах

Задача 1.

Найдите критическую толщину волноводного слоя для направляемой TE_3 моды тонкопленочного асимметричного волновода, если он представляет собой пленку стекла с показателем преломления n_1 =1,6, нанесенную на подложку из стекла с показателем преломления n_1 =1,5. Длина волны света λ =1,5 мкм.

Решение:

Используя соотношение (4.3), найдем:

$$h_{kp} = \frac{3\pi + arctg\sqrt{\frac{n_1^2 - n_2^2}{n_0^2 - n_1^2}}}{k_0\sqrt{n_0^2 - n_1^2}} = \frac{3\pi + arctg\sqrt{\frac{1,5^2 - 1}{1,6^2 - 1,5^2}}}{2\pi\sqrt{1,6^2 - 1,5^2}}\lambda = \frac{3.352\pi}{2\pi\cdot0.557}\lambda = 3\lambda.$$

Таким образом, критическая толщина волноводного слоя для ТЕ₃ моды равна 4,5 мкм.

3.4. Тема: Взаимодействия света с физическими полями

Задача 1.

Линейно поляризованная световая волна распространяется в направлении оси X кристалла ниобата лития. Найти величину изменения показателя преломления, если к электродам, нанесенным на грани кристалла, перпендикулярные оси Z (толщина кристалла в этом направлении – 1 см), приложено электрическое напряжение в 1 кВ. Плоскость поляризации света совпадает с плоскостью XOY, длина волны света λ=633 нм.

<u>Справка</u>: Величины обыкновенного и необыкновенного показателей преломления на данной длине волны составляют 2,286 и 2,2; а электрооптических коэффициентов r_{I3} =9,6·10⁻¹⁰ см/В; r_{33} =30,9·10⁻¹⁰ см/В.

Решение:

Поскольку световая волна распространяется вдоль оси X, а плоскость поляризации света совпадает с плоскостью XOY, то она соответствует обыкновенной волне в кристалле. Величина изменения показателя преломления за счет линейного электрооптического эффекта в случае обыкновенной поляризации света и управляющего электрического поля, приложенного вдоль оси Z определяется соотношением:

$$\Delta n_2 = -\frac{1}{2} n_0^3 \cdot r_{13} \cdot E_3$$

Подставляя в это выражение заданные значения обыкняенного показателя преломления, соответствующего электрооптического коэффициента, электрического напряжения и толщины кристаллического образца, получим:

$$\Delta n_2 = -\frac{1}{2}2.286^3 \cdot 9.6 \cdot 10^{-10} \cdot 10^3 = 5,734 \cdot 10^{-6}$$

Таким образом, величина изменения обыкновенного показателя преломления составляет в данном случае $5.734 \cdot 10^{-6}$.

3.5. Тема: Элементы нелинейной оптики

Задача 1.

Дифракционная эффективность фоторефрактивной решетки составляет 10%. Оценить величину поля пространственного заряда E_{sc} , если решетка сформирована в пластине ниобата лития толщиной 1 мм, вектор решетки параллелен оси Z, считывание

осуществляется излучением He-Ne лазера с обыкновенной поляризацией, а период решетки равен 5 мкм.

4. Темы самостоятельной работы студентов

4.1. Часть 1 «Основы оптоэлектроники»

4.1. Элементы зонной теории твердых тел
4.2. Взаимодействие оптического излучения с твердыми телами
4.3. Фотоэлектрическиея явления в полупровордниках
4.4. Флуктуационные процессы в полупроводниках
4.5. Эмиссия оптического излучения из полупроводников
4.6. Жидкие кристаллы в оптоэлектронике

4.2. Часть 2 «Волновая оптика»

4.1. Основные положения физической оптики
4.2. Оптика ограниченных световых пучков
4.3. Распространение световых волн в материальных средах
4.4 Взаимодействия света с физическими полями
4.5. Элементы нелинейной оптики

5. Темы лабораторных работ

5.1. Часть 1 «Основы оптоэлектроники»

	1	Измерение ширины запрещенной зоны полупроводника методом температурного сканирования
ľ	2	Исследование фотопроводимости в полупроводниках
Ī	3	Исследование шумовых свойств приборов оптоэлектроники
	4	Исследование свойств p-n перехода в приборах оптоэлектроники

5.2. Часть 2. «Волновая оптика»

1	Исследование состояния поляризации лазерного излучения в полимерном волоконном
	световоде
2	Исследование эффективности ввода света в волоконный световод
3	Исследование эффективности ввода света в планарный оптический волновод
4	Исследование принципа измерения микроперемещений с использованием поперечного
	смещения торца многомодового оптоволокна

6. Экзаменационные вопросы

6.1. Часть 1 «Основы оптоэлектроники»

Тема 1: Элементы зонной теории твердых тел

- 1. Зонная модель Зоммерфельда. Основные положения и допущения модели.
- 2. Зонная модель Блоха. Основные положения и допущения модели.
- 3. Понятия зоны проводимости, валентной зоны и запрещенной зоны.
- 4. Связь зонной модели с планетарной моделью атома.
- 5. Функция Ферми-Дирака. Распределение электронов по уровням энергии.
- 6. Понятие дырки, ее положение в энергетической диаграмме, параметры дырки.

- 7. Понятие квазиимпульса электрона, его свойства, зона Бриллюэна.
- 8. Понятие подвижности носителя заряда, ее определение и физический смысл.
- 9. Электропроводность полупроводника, его легирование, принцип детального равновесия.
- 10. Поведение полупроводника в постоянном электрическом поле. Объяснение возникновения электрического тока дрейфового и диффузионного типов.

Тема 2: Взаимодействие оптического излучения с твердыми телами

- 1. Параметры и характеристики, описывающие взаимодействие света с веществом.
- 2. Закон Бугера Ламберта. Коэффициент поглощения, его связь с параметрами вещества.
- 3. Основные механизмы поглощения оптического излучения твердыми телами.
- 4. Собственное поглощение, физика процесса, параметры, спектр поглощения.
- 5. Примесное поглощение, физика процесса, параметры, спектр поглощения, сравнение с собственным поглощением.
- 6. Поглощение свободными носителями заряда. Физика процесса, параметры.
- 7. Решеточное поглощение, физика процесса, параметры, спектр поглощения.
- 8. Спектр поглощения и коэффициент поглощения при действии нескольких механизмов поглощения.

Тема 3: Фотоэлектрические явления в полупроводниках

- 1. Понятие времени жизни неравновесных носителей заряда, скорость генерации, скорость рекомбинации носителей заряда. Механизмы фотопроводимости.
- 2. Фотопроводимость полупроводника. Собственная и примесная фотопроводимости.
- 3. Кинетика концентраций носителей заряда при освещении. Определение параметров полупроводника по кинетической кривой фотопроводимости.
- 4. Частотная характеристика и коэффициент усиления фотопроводимости.
- 5. Фотовольтаические эффекты в полупроводниках. Физические причины появления.
- 6. Фотоэдс Дембера. Механизм ее формирования, параметры.
- 7. Фотоэдс в неоднородных полупроводниках. Механизм ее формирования, параметры.
- 8. Барьерная фотоЭДС. Механизм ее формирования, параметры.
- 9. Другие виды фотоЭДС, их недостатки и преимущества.

Тема 4: Флуктуационные процессы в полупроводниках

- 1. Общие причины возникновения шумов в полупроводниках. Их основные типы.
- 2. Тепловой шум. Его природа, спектральная характеристика.
- 3. Дробовой шум. Его природа, спектральная характеристика.
- 4. Генерационно-рекомбинационный шум. Его природа и спектральная характеристика.
- 5. Избыточный шум. Его природа и спектральная характеристика.
- 6. Методы математического описания шумов, среднее значение, дисперсия.
- 7. Метод Фурье, Автокорреляционая функция, теорема Винера Хинчина.
- 8. Метод Ланжевена. Его применение к тепловому и генерационнорекомбинационному шуму.
- 9. Методы численной оценки шумов. Способы их снижения.

Тема 5: Эмиссия излучения из полупроводников

- 1. Понятие люминесценции. Параметры и характеристики для е описания.
- 2. Спектр излучение. Типы люминесценций по способу накачки.
- 3. Зависимость времени излучательной рекомбинации от параметров полупроводника.
- 4. Поведение атома в поле оптического излучения. Коэффициенты Эйнштейна.
- 5. Принцип создания оптического генератора на основе вынужденных переходов.
- 6. Требования к рабочему веществу лазера, его накачке, резонатору.
- 7. Полупроводниковый лазер на основе перехода. Принцип работы.
- 8. Светодиоды. Принцип работы, конструкции. Параметры излучения.

9. Применение принципов наноэлектроники для приборов оптоэлектроники.

Тема 6: Жидкие кристаллы в оптоэлектронике

- 1. Типы жидких кристаллов. Их строение и основные свойства.
- 2. Нематики. Структура, основные свойства в электрических полях.
- 3. Смектики. Структура, основные свойства в электрических полях.
- 4. Холестерики. Основные свойства в электричекских полях.
- 5. Ориентационные эффекты в жидких кристаллах. Оптические ячейки.
- 6. Переход Фредерикса в нематиках. Его параметры и разновидности.
- 7. Оптические свойства жидких кристаллов. Разновидности эффектов.
- 8. Конструкция и принцип работы оптической ячейки на основе твист эффекта.
- 9. Конструкции и принципы работы жидкокристаллических транспарантов, дефлекторов.

6.2. Часть 2 «Волоконная оптика»

ТЕМА: Основные положения физической оптики.

6.1. Уравнения Максвелла для диэлектрической среды. Материальные уравнения. Уравнения граничных условий.

- 1. Материальность электромагнитного поля.
- 2. Векторы, характеризующие электромагнитное поле.
- 3. Уравнения Максвелла в интегральной форме.
- 4. Теоремы векторного анализа для связи характеристик скалярных и векторных полей.
- 5. Уравнения Максвелла в дифференциальной форме.
- 6. Материальные уравнения.
- 7. Граничные условия для нормальных составляющих электрического поля.
- 8. Граничные условия для нормальных составляющих магнитного поля.
- 9. Граничные условия для тангенциальных составляющих электрического поля.
- 10. Граничные условия для тангенциальных составляющих магнитного поля.

6.2. Волновое уравнение. Поляризация света. Поляризационные элементы.

- 11. Волновое уравнение для электрического и магнитного векторов.
- 12. Плоские волны как простейшее решение волнового уравнения.
- 13. Символическая форма записи для поля плоских волн.
- 14. Распространение плоской волны в произвольном направлении.
- 15. Поперечная структура поля плоских волн.
- 16. Поляризация света. Неполяризованный свет. Частично поляризованный свет.
- 17. Линейная, круговая, эллиптическая поляризация.
- 18. Поляризационные элементы. Дихроизм и оптическая анизотропия.
- 19. Поляризационные призмы.
- 20. Фазовые пластинки.

ТЕМА: Оптика ограниченных световых пучков

6.3. Понятие углового спектра плоских волн. Параболическое уравнение теории дифракции.

- 21. Понятие углового спектра плоских волн.
- 22. Приближенное решение дифракционных задач на основе углового спектра плоских волн
- 23. Параболическое уравнение.
- 24. Гауссов световой пучок. Основные свойства, поле гауссова пучка.
- 25. Высшие гауссовы моды.
- 26. Суть и достоинства методов оптической обработки информации.
- 27. Преобразование Фурье в оптической системе.

28. Пространственная фильтрация в оптических системах.

ТЕМА: Распространение световых волн в материальных средах

6.4. Распространение света в направляющих структурах.

- 29. Планарный оптический волновод.
- 30. Моды планарного волновода.
- 31. Волновое уравнение для ТЕ- мод.
- 32. Решение для полей планарного волновода.
- 33. Дисперсионное уравнение планарного волновода.
- 34. Материалы интегральной оптики.
- 35. Связанные оптические волноводы.
- 36. Распространение световых волн в периодических структурах.

ТЕМА: Взаимодействия света с физическими полями

6.5. Электрооптический, акустооптический и фоторефрактивный эффекты.

- 37. Электрооптический эффект. Феноменологическое описание.
- 38. «Поперечный» электрооптический модулятор.
- 39. Акустооптический эффект. Феноменологическая теория.
- 40. Режимы дифракции света на акустических волнах. Дифракция Рамана-Ната и дифракция Брэгга.
- 41. Акустооптический модулятор.
- 42. Фоторефрактивный эффект. Механизмы пространственного разделения носителей заряда.
- 43. Кинетика записи и релаксации элементарных голограмм в материале с фотовольтаическим механизмом транспорта носителей заряда.

ТЕМА: Элементы нелинейной оптики

6.6. Нелинейно-оптические преобразования световых полей.

- 44. Понятие нелинейно оптической среды и величина интенсивности светового поля, необходимая для проявления нелинейно оптических свойств среды.
- 45. Выражение для диэлектрической проницаемости среды с квадратичной нелинейностью и возможные нелинейно оптические эффекты в такой среде.
- 46. Выражение для диэлектрической проницаемости среды с кубичной нелинейностью и возможные нелинейно оптические эффекты в такой среде.

7. Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы для оценивания знаний и характеризующие этапы формирования компетенций (все методические материалы приведены в п.12 программы):

- 1. В.Н. Давыдов. Физические основы оптоэлектроники. Учебное пособие: Томский государственный университет систем управления и радиоэлектроники (Томск), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 139с. Режим доступа: http://edu.tusur.ru/training/publications/3716.
- 2. Шандаров В. М. Волоконно-оптические устройства технологического назначения: [Электронный ресурс]: Учебное пособие. Томск: ТУСУР. 2013. 198 с. Режим доступа: http://edu.tusur.ru/training/publications/3709

12.2. Литература дополнительная

- 1. В.Н. Давыдов В.Н. Физические основы оптоэлектроники. Учебное пособие. ТМЦ ДО, 2004. 135 с. (Кол-во экз. 14)
 - 2. Ю.Р. Носов. Оптоэлектроника. М., Наука, 1989, 360 с. (Кол-во экз.- 12).

- 3. Т.Мосс, Г.Баррел, Б.Эллис. Полупроводниковая оптоэлектроника. М., Мир, 1976. 430 с. (Кол-во экз 3).
- 4. Игнатов А.Н. Оптоэлектроника и нанофотоника [Электронный ресурс]: учебное пособие. СПб.: Лань, 2011.- 528 с. Режим доступа http://e.lanbook.com/view/book/690

12.3. Перечень методических указаний по практическим занятиям и лабораторным работам

- 1. Давыдов В.Н. Измерение ширины запрещенной зоны полупроводника методом температурного сканирования. Учебно-методическое пособие к лабораторной работе. Томск: ТУСУР, 2013. 10 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 10 с. Режим доступа: http://edu.tusur.ru/training/publications/3559.
- 2. Давыдов В.Н. Исследование фотопроводимости в полупроводниках. Учебнометодическое пособие к лабораторной работе. Томск: ТУСУР, 2013. 26 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 26 с. Режим доступа: http://edu.tusur.ru/training/publications/3558.
- 3. Давыдов В.Н. Исследование шумовых свойств приборов оптоэлектроники. Учебнометодическое пособие к лабораторной работе. Томск, ТУСУР. 2013. 15 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013 15 с. Режим доступа: http://edu.tusur.ru/training/publications/3561.
- 4. Давыдов В.Н. Исследование свойств p-n перехода в приборах оптоэлектроники. Учебно-методическое пособие к лабораторной работе. Томск, ТУСУР. 2013. 22 с. [Электронный ресурс]: Руководство к лабораторной работе. Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. Электрон. текстовые дан. Томск: ТУСУР, 2013. 22 с. Режим доступа: http://edu.tusur.ru/training/publications/3560.
- 5. Шандаров В. М. Исследование состояния поляризации лазерного излучения в полимерном волоконном световоде: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") 2013. 9 с., Режим доступа: http://edu.tusur.ru/training/publications/3709
- 6. Шандаров В. М. Исследование эффективности ввода света в волоконный световод: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") Томск: ТУСУР. 2013. 8 с., Режим доступа: http://edu.tusur.ru/training/publications/3705
- 7. Карпушин П. А., Шандаров В. М. Исследование принципа измерения микроперемещений с использованием поперечного смещения торца многомодового оптоволокна: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") Томск: ТУСУР. 2013. 8 с., Режим доступа: http://edu.tusur.ru/training/publications/3706
- 8. Кущ Г. Г., Шандаров В. М. Исследование эффективности ввода света в планарный оптический волновод: [Электронный ресурс]: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") Томск: ТУСУР. 2013. 11 с., Режим доступа: http://edu.tusur.ru/training/publications/3703
 - 9. Давыдов В.Н. Физические основы оптоэлектроники. Учебно-методическое пособие

для самостоятельной работы студентов с решениями типовых задач и задачами для самостоятельной работы. Томск, ТУСУР. — 2013. — 112 с. [Электронный ресурс]: Давыдов В.Н. Физические основы оптоэлектроники. Учебно-методическое пособие для самостоятельной работы студентов с решениями типовых задач и задачами для самостоятельной работы. — Томск: Том. гос. ун-т систем управления и радиоэлектроники (ТУСУР), Кафедра электронных приборов. — Электрон. Текстовые дан. — Томск: ТУСУР, 2013. — 112с. Режим доступа: http://edu.tusur.ru/training/publications/3562.

10. Шандаров В. М. Волоконно-оптические устройства и приборы [Электронный ресурс]: Учебно-методическое пособие по практическим занятиям и самостоятельной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль - "Оптические системы и сети связи"). - Томск: Томск. гос. унт систем упр. и радиоэлектроники, 2013. — 60 с. Режим доступа: http://edu.tusur.ru/training/publications/3712