МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

		УТВЕРЖДАЮ						
Ди	Директор департамента образования							
(Π	роректор	по учебной работе)						
		П.Е. Троян						
‹ ‹	»	2017 1						

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ ЭЛЕКТРОНИКИ И НАНОЭЛЕКТРОНИКИ

Уровень профессионального образования: высшее образование магистратура (академическая)							
Направления подготовки	11.04.04 «Электроника и наноэлектроника»	»					
Профиль(и)	«Квантовая и оптическая электроника»						
Форма обучения	очная						
Факультет	электронной техники (ФЭТ)						
Кафедра	электронных приборов (ЭП)						
Курс1	Семестр1						
· · · · · · · · · · · · · · · · · · ·							

Учебный план набора 2015 года и последующих лет.

Распределение рабочего времени:

№	Виды учебной работы	Семестр 1	Семестр 2	Семестр 3	Семестр 4	Всего	Единицы
1.	Лекции	26				26	часов
2.	Лабораторные работы	-				-	часов
3.	Практические занятия	18				18	часов
4.	Курсовой проект/работа (КРС) (аудиторная)	-				-	часов
5.	Всего аудиторных занятий (Сумма 1-4)	44				44	часов
6.	Из них в интерактивной форме	14				14	часов
7.	Самостоятельная работа студентов (СРС)	64				64	часов
8.	Всего (без экзамена) (Сумма 5,7)	108				108	часов
9.	Самост. работа на подготовку, сдачу экзамена	36				36	часов
10.	Общая трудоемкость (Сумма 8,9)	144				144	часов
	(в зачетных единицах)	4				4	3E

Экзамен 1 семестр

Рассмотрена и	одо	брена на	заседании	кафедры
протокол №	77	от « <u>11</u>		20 <u>17</u> г.

Лист согласований

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (ФГОС ВО) направления <u>11.04.04</u> «Электроника и наноэлектроника» (уровень магистратура), утвержденного приказом Министерства образования и науки Российской Федерации от 30 октября 2014 г. № 1407, рассмотрена и утверждена на заседании кафедры физической электроники от «11» 01 2017 г., протокол № 77 ... Разработчики: Профессор кафедры ФЭ _____/ <u>П.Е. Троян</u> _____/ <u>В.В. Каранский</u> Ассистент кафедры ФЭ Заведующий кафедрой Профессор кафедры ФЭ / П.Е. Троян Рабочая программа согласована с факультетом, профилирующей и выпускающей кафедрами направления подготовки. Декан ФЭТ _____/ _____/ А.И. Воронин Зав. профилирующей кафедрой ЭП / С.М. Шандаров Зав. выпускающей кафедрой ЭП / ______ / _____ С.М. Шандаров Эксперты: Председатель методической / И.А. Чистоедова комиссии факультета ФЭТ Председатель методической комиссии кафедры ЭП

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Целью изучения дисциплины «Актуальные проблемы современной электроники и наноэлектроники» является изучение передовых достижений, основных направлений, тенденций, перспектив и проблем развития современной наноэлектроники с целью выработки навыков оценки новизны исследований и разработок, освоения новых методологических подходов к решению профессиональных задач в области наноэлектроники.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

В соответствии с основной образовательной программой дисциплина «Актуальные проблемы современной электроники и наноэлектроники» относится к обязательным дисциплинам базовой части (Б1.Б.1).

Для освоения дисциплины необходима подготовка на уровне бакалавра по направлению «Электроника и наноэлектроника», а также знания дисциплины «История и методология науки и техники в области электроники».

Основные положения дисциплины «Актуальные проблемы современной электроники и наноэлектроники» должны быть использованы при изучении следующих дисциплин: проектирование и технология электронной компонентной базы, оптические датчики.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

3.1. Изучение дисциплины направлено на формирование у магистрантов следующих компетенций:

- способность понимать основные проблемы в своей предметной области, выбирать методы и средства их решения (ОПК-1);
 - способность демонстрировать навыки работы в коллективе, порождать новые идеи (ОПК-3);
- способность делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения (ПК-5);
- способность овладевать навыками разработки учебно-методических материалов для студентов по отдельным видам учебных занятий (ПК-19).

3.2. В результате изучения дисциплины магистрант должен:

знать: основные задачи, направления, тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники; передовой отечественный и зарубежный научный опыт и достижения в области электроники, микро- и наноэлектроники;

уметь: оценивать научную значимость и перспективы прикладного использования результатов исследований; предлагать новые области научных исследований и разработок, новые методологические подходы к решению задач в области электроники и наноэлектроники;

владеть: современной научной терминологией и основными теоретическими и экспериментальными подходами в передовых направлениях электроники, микро- и наноэлектроники.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 4 зачетных единиц.

Dun yungung nagaru	Всего часов	Семестры
Вид учебной работы	всего часов	1
Аудиторные занятия (всего)	44	44
В том числе:		-
Лекции	26	26
Практические занятия	18	18
Самостоятельная работа (всего)	64	64
В том числе:		-
Подготовка к практическим занятиям (семинарам).	20	20
Подготовка к докладам-презентациям.	44	44
Вид промежуточной аттестации (экзамен)	36	36
Общая трудоемкость час	144	144
Зачетные Единицы	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

№ п/п	Наименование раздела дисциплины	Лекции	Практические занятия	Самост. рабо- та студента	Всего час	Формируемые компетенции (ОК, ПК, ПСК)
1.	Современное состояние и тенденции развития электроники и наноэлектроники.	6	0	2	8	ОПК-1,3; ПК-5,19
2.	Современная литография. Ионно-плазменные технологии и молекулярно-лучевая эпитаксия.	0	2	10	12	ОПК-1,3; ПК-5,19
3.	Термоэлектрические и фотоэлектрические преобразователи энергии сегодня и завтра.	0	1	4	5	ОПК-1,3; ПК-5,19
4.	Детекторы ионизирующих излучений в науке и технике.	0	2	4	6	ОПК-1,3; ПК-5,19
5.	Физические основы криоэлектроники, приборы на эффекте Джозефсона.		1	6	13	ОПК-1,3; ПК-5,19
6.	Магнитная и сегнетоэлектрическая память.	0	2	4	6	ОПК-1,3; ПК-5,19
7.	Широкозонные полупроводники: прорыв в будущее. Высокотемпературная полупроводниковая электроника.	8	1	4	13	ОПК-1,3; ПК-5,19
8.	Пористый кремний и его применение в кремниевой микрофотонике.	0	1	4	5	ОПК-1,3; ПК-5,19
9.	Технология аморфного и поликремния для электроники.	0	0	4	4	ОПК-1,3; ПК-5,19
10.	Углеродные кластеры и их применение в наноэлектронике.	0	2	4	6	ОПК-1,3; ПК-5,19
11.	Методы анализа наноструктур и материалов.	0	2	4	6	ОПК-1,3; ПК-5,19
12.	Гетеро- и наноэлектроника.	6	2	6	14	ОПК-1,3; ПК-5,19
13.	Интеллектуальная силовая электроника.	0	2	4	6	ОПК-1,3; ПК-5,19
14	Спутниковая, сотовая, мобильная и оптоволоконная связи.	0	0	4	4	ОПК-1,3; ПК-5,19
	ИТОГО	26	18	64	108	

5.2. Содержание разделов дисциплины (по лекциям)

№ п/ п	Наименование разделов	Содержание разделов	Трудо- емкость (час.)	Формируемые компетенции (ОК, ПК, ПСК)
1.	Современное состояние и тенденции развития электроники и наноэлектроники.	Мировой рынок электроники. Рынок отечественной электроники. Закон Мура и тенденции развития электроники. Современное состояние отечественной и зарубежной электроники. Наиболее крупные электронные компании, работающие по технологии 22 нм.	6	ОПК-1,3; ПК-5,19
5.	Физические основы криоэлектроники, приборы на эффекте Джозефсона.	Физические основы сверхпроводимости. Куперовские пары. Приборы криоэлектроники. ВТСП.	6	ОПК-1,3; ПК-5,19
7.	Широкозонные полупроводники: прорыв в будущее. Высокотемпературная полупроводниковая электроника.	Материалы высокотемпературной полупроводниковой электроники: карбид кремния, карбид титана, карбид бора и родственные материалы. Технологии получения. Электрофизические свойства. Структура карбида кремния. Радиационная, механическая, химическая стойкость, теплопроводность, верхний предел рабочих температур для приборов на основе карбида кремния. Измерители температуры на основе облученного алмаза и карбида кремния. Приборы на основе карбида кремния.	8	ОПК-1,3; ПК-5,19
12	Гетеро- и наноэлектроника.	Нанонаука как совокупность знаний о свойствах вещества в нанометровом масштабе. Нанотехнологии, наноинженерия. Полупроводниковые гетеропереходы; общая характеристика и особенности полупроводниковых лазеров.	6	ОПК-1,3; ПК-5,19

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (преды-

дущими) и обеспечиваемыми (последующими) дисциплинами

№ п/п	Наименование обеспечивающих (предыдущих) и обеспечиваемых		№ № разделов данной дисциплины, для которых необходимо изучение обеспечивающих (предыдущих) и обеспечиваемых (последующих) дисциплин												
	(последующих) дисциплин	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Предшествующие дисциплины															
1.	история и методология науки и техни- ки в области электроники		+	+	+	+	+	+	+	+	+	+	+	+	+
	П	ослед	цуюш	ие ді	исциг	ілині	Ы								
1.	проектирование и технология электронной компонентной базы	+	+	+	+	+	+	+	+	+	+	+	+	+	+
2.	оптические датчики			+	+				+	+					+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень		Виды занятий		Формилионтроля
компетенций	Л	Пр.	CPC	Формы контроля
ОПК-1	+	+	+	Отчет по практическим занятиям. Выступление с докладом-презентацией.
ОПК-3	+	+	+	Отчет по практическим занятиям. Выступление с докладом-презентацией.
ПК-5	+	+	+	Отчет по практическим занятиям. Выступление с докладом-презентацией.
ПК-19	+	+	+	Отчет по практическим занятиям. Выступление с докладом-презентацией.

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Технологии интерактивного обучения при разных формах занятий в часах

Ф ормы Методы	Лекции (час)	ПЗ (час)	Всего
Мультимедийные презентации с видеороликами и раздаточным материалом с последующим обсуждением	4	2	6
Доклад-презентация		8	8
Итого интерактивных занятий	4	10	14

7. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

не предусмотрено

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (СЕМИНАРЫ)

№ п/п	№ раздела дисциплины	-		Компетенции ОК, ПК, ПСК
1.	2	Современная литография	1	ОПК-1,3; ПК-5,19
2.	2	Ионно-плазменные технологии эпитаксия	1	ОПК-1,3; ПК-5,19
3.	3	Термоэлектрические преобразователи энергии	1	ОПК-1,3; ПК-5,19
4.	4	Детекторы ионизирующих излучений	2	ОПК-1,3; ПК-5,19
5.	5	Основы криоэлектроники	1	ОПК-1,3; ПК-5,19
6.	6	Магнитная и сегнетоэлектрическая память	2	ОПК-1,3; ПК-5,19
7.	7	Высокотемпературная полупроводниковая электроника	1	ОПК-1,3; ПК-5,19
8.	8	Пористый кремний и диоксид кремния в электронике	1	ОПК-1,3; ПК-5,19
9.	10	Технология углеродных кластеров и их применение в нано- электронике	2	ОПК-1,3; ПК-5,19
10.	11	Дифракционный анализ и сканирующая зондовая микроскопия	2	ОПК-1,3; ПК-5,19
11.	12	Квантово-размерные эффекты – основа наноэлектроники	1	ОПК-1,3; ПК-5,19
12.	12	Приборы наноэлектроники. Гетероструктурная электроника	1	ОПК-1,3; ПК-5,19
13.	13	Интеллектуальная силовая электроника	2	ОПК-1,3; ПК-5,19

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	№ раздела дисциплины	Тематика самостоятельной работы (детализация)	Трудо- емкость (час.)	Компетенции ОК, ПК, ПСК	Контроль выпол- нения работы
1.	1-14	Проработка лекционного материала и дополнительной литературы при подготовке к практическим занятиям (семинарам).	20	ОПК-1,3; ПК- 5,19	Отчет по практиче- ским занятиям.
2.	1-14	Проработка лекционного материала и дополнительной литературы при подготовке к докладам-презентациям.	44	ОПК-1,3; ПК- 5,19	Выступление с до- кладом- презентацией.
3.	1-14	Подготовка и сдача экзамена	36	ОПК-1,3; ПК- 5,19	Оценка на экзамене

Каждый студент за семестр должен сделать три доклада, которые сопровождаются мультимедийными презентациями и видеороликами.

10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ)

не предусмотрено

11. РЕЙТИНГОВАЯ СИСТЕМА ДЛЯ ОЦЕНКИ УСПЕВАЕМОСТИ СТУДЕНТОВ

Таблица 11.1. Балльные оценки для элементов контроля дисциплины

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
Посещение занятий	3	3	3	9
Практические занятия	6	6	10	22
Доклад-презентация	10	10	10	30
Компонент своевременности	3	3	3	9
Итого максимум за период:	22	22	26	70
Сдача экзамена (максимум)				30
Нарастающим итогом	22	44	70	100

Таблица 11.2. Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3. Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 – 100	А (отлично)
1 (vanavra)	85 – 89	В (очень хорошо)
4 (хорошо)	75 – 84	С (хорошо)
(зачтено)	70 – 74	D ()
3 (удовлетворительно)	65 – 69	D (удовлетворительно)
(зачтено)	60 – 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

В экзаменационных билетах содержится 3 теоретических вопроса (по 10 баллов каждый вопрос).

Экзаменационные вопросы:

- 1. Этапы развития электроники.
- 2. Основные идеи микроэлектроники и наноэлектроники, функциональной электроники.
- 3. Молекулярно-лучевая эпитаксия.
- 4. Ионно-лучевые технологии.
- 5. Литография: электронная, рентгеновская, ионная.
- 6. Ионное легирование полупроводников.
- 7. Инструментальные методы нанотехнологии.
- 8. Материалы для высокотемпературной полупроводниковой электроники: SiC, TiC, BC.
- 9. Свойства карбида кремния.
- 10. Приборы на основе SiC.
- 11. Квантово-размерные эффекты. Сверхрешетки, квантовые точки.
- 12. Эволюция развития силовых полупроводниковых ключей.
- 13. IGBT-транзисторы.
- 14. Интеллектуальные силовые модули.
- 15. Сверхмощные полупроводниковые ключи новых технологий.
- 16. Нанонаука: нанотехнологии, наноинженерия.
- 17. ACM, CTM.
- 18. Гетеролазеры и их применение.
- 19. Высокотемпературная сверхпроводимость.
- 20. Материалы высокотемпературной сверхпроводимости.

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

12.1 Основная литература

- 1. Троян П.Е. Актуальные проблемы современной электроники и наноэлектроники: Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 224 с. [электронный ресурс]. http://miel.tusur.ru/images/files/Uchebno-metodicheskii_kompleks%20disciplin/Troyan_APE_UP.pdf
- 2. Анищенко, Е. В. Технология кремниевой наноэлектроники: Учебное пособие [Электронный ресурс] / Анищенко Е. В., Данилина Т. И., Кагадей В. А. Томск: ТУСУР, 2011. 263 с. Режим доступа: https://edu.tusur.ru/publications/552

12.2 Дополнительная литература

- 1. Процессы микро- и нанотехнологии: учеб. пособие / Данилина Т.И. [и др.]. Томск: ТУСУР, 2005. 316 с. (103)
- 2. Данилина Т.И. Технология СБИС: учебн. пособие / Т.И. Данилина, В.А. Кагадей. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 287 с. (51)
- 3. Силовые полупроводниковые ключи: семейства, характеристики, применение / П.А. Воронин. 2-е изд. М.: ДОДЭКА-ХХІ, 2005. 384 с. (16)
- 4. Основы силовой электроники: учебное пособие для вузов / Г.С. Зиновьев. 2-е изд., испр. и доп. Новосибирск: НГТУ, 2003.-664 с. (79)
- 5. Драгунов В.П. Основы наноэлектроники: учебное пособие для вузов. М.: Физматкнига, 2006; М.: Логос, 2006; М.: Университетская книга, 2006. 494 с. (**32**)
- 6. Электроника и микропроцессорная техника: Учебник для вузов / В.Г. Гусев, Ю.М. Гусев. 4-е изд., доп. М.: Высшая школа, 2006. 800 с. (78)
- 7. Твердотельная электроника: Учебное пособие для вузов / В.А. Гуртов. 2-е изд., доп. М.: Техносфера, 2005.-408 с. (88)

12.3 Учебно-методические пособия и программное обеспечение

1. Троян П.Е. Актуальные проблемы современной электроники и наноэлектроники: Учебнометодическое пособие по аудиторным практическим и семинарским занятиям и самостоятельной работе для студентов, обучающихся по направлению 210100 «Электроника и наноэлектроника». – Томск: Томский государственный университет систем управления и радиоэлектроники, 2013. – 32 с. – [электронный ресурс]. – http://miel.tusur.ru/images/files/Uchebno-metodicheskii_kompleks%20disciplin/Troyan_APE_UMP.pdf

12.4 Базы данных, информационно-справочные и поисковые системы

- 1. Образовательный портал в свободном доступе: «Физика, химия, математика студентам и школьникам. Образовательный проект А.Н. Варгина» Режим доступа: http://www.ph4s.ru/
- 2. «Единое окно доступа к образовательным ресурсам» [Электронный ресурс]: информационная система. Режим доступа: http://window.edu.ru/
- 3. «eLIBRARY.RU» [Электронный ресурс]: научная электронная библиотека. Режим доступа: http://elibrary.ru
- 4. «Научно-образовательный портал ТУСУР» [Электронный ресурс]: научно-образовательный портал университета. Режим доступа: http://edu.tusur.ru/

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1 Общие требования к материально-техническому обеспечению дисциплины

13.1.2 Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 80, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2 Материально-техническое обеспечение для практических занятий

Для проведения практических (семинарских) занятий используется учебная аудитория, с количеством посадочных мест не менее 25, оборудованная доской и стандартной учебной мебелью.

13.1.3 Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория, расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 2 этаж, ауд. 217. Состав оборудования: учебная мебель; доска магнитомаркерная.

13.2 Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видео увеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

14.1. Основные требования к фонду оценочных средств и методические рекоменда-

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Таблица 14 – Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зре- ния	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опор- но-двигательного ап- парата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- 1. в печатной форме;
- 2. в печатной форме с увеличенным шрифтом;
- 3. в форме электронного документа;
- 4. методом чтения ассистентом задания вслух;
- 5. предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- 1. письменно на бумаге;
- 2. набор ответов на компьютере;
- 3. набор ответов с использованием услуг ассистента;
- 4. представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

15	. МЕТОДИЧЕСКИЕ	РЕКОМЕНДАЦИИ	ПО	ОРГАНИЗАЦИИ	изучения
ДИСЦИІ	ПЛИНЫ				

Без рекомендаций.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное бюджетное государственное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТ	ВЕРЖДАЮ
Директор департ	гамента образования
(Проректор по у	чебной работе)
	П.Е. Троян
« »	2017 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ ЭЛЕКТРОНИКИ И НАНОЭЛЕКТРОНИКИ

Уровень профессионального о	бразования: высшее образование	магистратура (а	академическая)
Направления подготовки	11.04.04 «Электроника и наноэлектрони	ка»	
Профиль(и)	«Квантовая и оптическая электроника»		
Форма обучения	очная		
Факультет	электронной техники (ФЭТ)		
Кафедра	электронных приборов (ЭП)		
Курс1	Семестр	1	
	Учебный план набора <u>2015</u> года и пос	ледующих лет.	
Экзамен <u>1</u> семестр)		
Разработчики:			
Профессор кафедры ФЭ		//	П.Е. Троян
Ассистент кафедры ФЭ		/	В.В. Каранский

1. ВВЕДЕНИЕ

Фонд оценочных средств (ФОС) является приложением к рабочей программе учебной дисциплины «Актуальные проблемы современной электроники и наноэлектроники» и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по учебной дисциплине «Актуальные проблемы современной электроники и наноэлектроники» используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной «Актуальные проблемы современной электроники и наноэлектроники» компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-1	способность понимать основные проблемы в своей предметной области, выбирать методы и средства их решения	знать основные задачи, направления, тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники; знать передовой отечественный и зарубежный
ОПК-3	способность демонстрировать навыки работы в коллективе, порождать новые идеи	научный опыт и достижения в области электроники, микро- и наноэлектроники. уметь оценивать научную значимость и перспективы прикладного использования результатов ис-
ПК-5	способность делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения	следований; уметь предлагать новые области научных исследований и разработок, новые методологические подходы к решению задач в области электроники и наноэлектроники. владеть современной научной терминологией и
ПК-19	способность овладевать навыками разработки учебно-методических материалов для студентов по отдельным видам учебных занятий	основными теоретическими и экспериментальными подходами в передовых направлениях электроники, микро- и наноэлектроники.

2. РЕАЛИЗАЦИЯ КОМПЕТЕНЦИЙ

2.1 Компетенция ОПК-1

ОПК-1 способность понимать основные проблемы в своей предметной области, выбирать методы и средства их решения.

Для формирования компетенции необходимо осуществить ряд этапов. Содержание этапов формирования компетенции, виды занятий и используемые средства оценивания представлены в таблице 2.1.

Таблица 2.1 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	знать основные задачи, направления, тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники; знать передовой отечественный и зарубежный научный опыт и достижения в области электроники, микро- и наноэлектроники.	уметь оценивать научную значимость и перспективы прикладного использования результатов исследований; уметь предлагать новые области научных исследований и разработок, новые методологические подходы к решению задач в области электроники и наноэлектроники.	владеть современной научной терминологией и основными теоретическими и экспериментальными подходами в передовых направлениях электроники, микро- и наноэлектроники.
Виды занятий	Лекции; Практические занятия; Групповые консультации	Практические занятия; Самостоятельная работа	Практические занятия;
Используемые средства оценивания	Опрос на лекции; Практическое задание (защита);	Практическое задание (вы- полнение, оформление).	Экзамен

Dranger	
Экзамен	

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 2.2.

Таблица 2.2 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	контролирует работу, проводит оценку, совершенствует работы
Хорошо (базовый уровень)	знает факты, принципы, процессы, общие понятия в пределах изучаемой области	обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	обладает базовыми общими знаниями	обладает основными умениями, требуемыми для выполнения простых задач	работает при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 2.3.

Таблица 2.3 – Показатели и критерии оценивания компетенции на этапах

Показатели и крите- рии	Знать	Уметь	Владеть
Отлично (высокий уровень)	знает основные проблемы в области электроники, микро- и наноэлектроники; знает классификацию методов решения проблем в области электроники, микро- и наноэлектроники; знает классификацию средств решения проблем в области электроники, микро- и наноэлектроники	умеет оценивать критичность проблем в области электроники, микро- и наноэлектроники; умеет выбирать метод решения проблем в области электроники, микро- и наноэлектроники; умеет выбирать средства решения проблем в области электроники, микро- и наноэлектроники, микро- и наноэлектроники	владеет навыками практической работы в проблемных областях электроники; владеет современной научной терминологией в области постановки проблем в научных исследований; владеет теоретическим и экспериментальным подходом к описанию проблемной области научных исследований электроники, микро- и наноэлектроники
Хорошо (базовый уровень)	знает классификацию методов решения проблем в области электроники, микро- и наноэлектроники; знает классификацию средств решения проблем в области электроники, микро- и наноэлектроники	умеет выбирать метод решения проблем в области электроники, микро- и наноэлектроники; умеет выбирать средства решения проблем в области электроники, микро- и наноэлектроники	владеет теоретическим и экспериментальным подходом к описанию проблемной области научных исследований электроники, микро- и наноэлектроники
Удовлетворительно (пороговый уровень)	знает классификацию средств решения проблем в области электроники, микро- и наноэлектроники	умеет выбирать средства решения проблем в области электроники, микро- и наноэлектроники	владеет теоретическим подходом к описанию про- блемной области научных исследований электроники, микро- и наноэлектроники

2.2 Компетенция ОПК-3

ОПК-3 способность демонстрировать навыки работы в коллективе, порождать новые идеи.

Для формирования компетенции необходимо осуществить ряд этапов. Содержание этапов формирования компетенции, виды занятий и используемые средства оценивания представлены в таблице 2.4.

Таблица 2.4 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	знать основные задачи, направления, тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники; знать передовой отечественный и зарубежный научный опыт и достижения в области электроники, микро- и наноэлектроники.	уметь оценивать научную значимость и перспективы прикладного использования результатов исследований; уметь предлагать новые области научных исследований и разработок, новые методологические подходы к решению задач в области электроники и наноэлектроники.	владеть современной научной терминологией и основными теоретическими и экспериментальными подходами в передовых направлениях электроники, микро- и наноэлектроники.
Виды занятий	Лекции; Практические занятия; Групповые консультации	Практические занятия; Самостоятельная работа	Практические занятия;
Используемые средства оценивания	Опрос на лекции; Практическое задание (защита); Экзамен	Практическое задание (вы- полнение, оформление).	Экзамен

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 2.2 в п. 2.1.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 2.5.

Таблица 2.5 – Показатели и критерии оценивания компетенции на этапах

Показатели и крите- рии	Знать	Уметь	Владеть
Отлично (высокий уровень)	знает передовой зарубежный опыт при работе в коллективе	умеет применять новые методологические подходы в обсуждении идей в коллективе умеет оценивать эффективность работы коллектива	владеет современными подходами работы в коллективе
Хорошо (базовый уровень)	знает основные принципы работы с коллективом	умеет оценивать эффективность работы коллектива	владеет основными навы- ками работы в коллективе
Удовлетворительно (пороговый уровень)	знает основные задачи коллектива	умеет работать в научном коллективе, занимающимся научными исследованиями в области электроники и наноэлектроники	владеет основной терми- нологией

2.3 Компетенция ПК-5

ПК-5 способность делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения.

Для формирования компетенции необходимо осуществить ряд этапов. Содержание этапов формирования компетенции, виды занятий и используемые средства оценивания представлены в таблице 2.6.

Таблица 2.6 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	знать основные задачи, направления, тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники; знать передовой отечественный и зарубежный научный опыт и достижения в области электроники, микро- и наноэлектроники.	уметь оценивать научную значимость и перспективы прикладного использования результатов исследований; уметь предлагать новые области научных исследований и разработок, новые методологические подходы к решению задач в области электроники и наноэлектроники.	владеть современной научной терминологией и основными теоретическими и экспериментальными подходами в передовых направлениях электроники, микро- и наноэлектроники.
Виды занятий	Лекции; Практические занятия; Групповые консультации	Практические занятия; Самостоятельная работа	Практические занятия;
Используемые средства оценивания	Опрос на лекции; Практическое задание (защита); Экзамен	Практическое задание (вы- полнение, оформление).	Экзамен

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 2.2 в п. 2.1.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 2.7.

Таблица 2.7 – Показатели и критерии оценивания компетенции на этапах

Показатели и крите- рии	Знать	Уметь	Владеть
Отлично (высокий уровень)	знает методику оформления научных публикаций и заявок на изобретения	умеет делать научно- обоснованные выводы по результатам теоретических и экспериментальных ис- следований	владеет практическими навыками описания теоретических и экспериментальных исследований в области электроники и наноэлектроники
Хорошо (базовый уровень)	знает передовые зарубежные и отечественные достижения в научных исследованиях	умеет делать научно- обоснованные выводы по результатам теоретических и экспериментальных ис- следований	владеет практическими навыками описания теоретических и экспериментальных исследований в области электроники и наноэлектроники
Удовлетворительно (пороговый уровень)	знает основные зарубежные и отечественные достижения в научных исследованиях	умеет делать научно- обоснованные выводы по результатам теоретических и экспериментальных ис- следований с помощью руководителя	владеет навыками форму- лирования научных выво- дов по результатам иссле- дований

2.4 Компетенция ПК-19

ПК-19 способность овладевать навыками разработки учебно-методических материалов для студентов по отдельным видам учебных занятий.

Для формирования компетенции необходимо осуществить ряд этапов. Содержание этапов формирования компетенции, виды занятий и используемые средства оценивания представлены в таблице 2.8.

Таблица 2.8 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	знать основные задачи, направления, тенденции и перспективы развития электроники и наноэлектроники, а также смежных областей науки и техники; знать передовой отечественный и зарубежный научный опыт и достижения в области электроники, микро- и наноэлектроники.	уметь оценивать научную значимость и перспективы прикладного использования результатов исследований; уметь предлагать новые области научных исследований и разработок, новые методологические подходы к решению задач в области электроники и наноэлектроники.	владеть современной научной терминологией и основными теоретическими и экспериментальными подходами в передовых направлениях электроники, микро- и наноэлектроники.
Виды занятий	Лекции; Практические занятия; Групповые консультации	Практические занятия; Самостоятельная работа	Практические занятия;
Используемые средства оценивания	Опрос на лекции; Практическое задание (защита); Экзамен	Практическое задание (вы- полнение, оформление).	Экзамен

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 2.2 в п. 2.1.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 2.9.

Таблица 2.9 – Показатели и критерии оценивания компетенции на этапах

Показатели и крите- рии	Знать	Уметь	Владеть
Отлично (высокий уровень)	знает методические указания по разработке учебнометодических материалов; основные методы изложения материалов	умеет использовать мето- дические указания при написании учебно- методического пособия	владеет навыками практической работы по написанию учебно-методического пособия
Хорошо (базовый уровень)	знает методические указания по разработке учебнометодических материалов; основные принципы изложения материала для написания учебнометодического пособия	умеет использовать мето- дические указания при написании учебно- методического пособия	владеет навыками практической работы по написанию учебно-методического пособия
Удовлетворительно (пороговый уровень)	знает методические указания по разработке учебнометодических материалов	умеет использовать мето- дические указания при написании учебно- методического пособия под руководством преподавате- ля	владеет базовыми принци- пами написания учебно- методических пособий

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для реализации вышеперечисленных задач обучения используются следующие материалы:

– типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе: практические задания, самостоятельная работа, экзамен.

3.1 Темы для практических занятий

- 1. Современная литография.
- 2. Ионно-плазменные технологии эпитаксия.
- 3. Термоэлектрические преобразователи энергии.
- 4. Детекторы ионизирующих излучений.
- 5. Основы криоэлектроники.
- 6. Магнитная и сегнетоэлектрическая память.
- 7. Высокотемпературная полупроводниковая электроника.
- 8. Пористый кремний и диоксид кремния в электронике.
- 9. Технология углеродных кластеров и их применение в наноэлектронике.
- 10. Дифракционный анализ и сканирующая зондовая микроскопия.
- 11. Квантово-размерные эффекты основа наноэлектроники.
- 12. Приборы наноэлектроники. Гетероструктурная электроника.
- 13. Интеллектуальная силовая электроника.

3.2 Темы для самостоятельной работы

- 1. Современное состояние и тенденции развития электроники и наноэлектроники.
- 2. Современная литография. Ионно-плазменные технологии и молекулярно-лучевая эпитаксия.
- 3. Термоэлектрические и фотоэлектрические преобразователи энергии сегодня и завтра.
- 4. Детекторы ионизирующих излучений в науке и технике.
- 5. Физические основы криоэлектроники, приборы на эффекте Джозефсона.
- 6. Магнитная и сегнетоэлектрическая память.
- 7. Широкозонные полупроводники: прорыв в будущее. Высокотемпературная полупроводниковая электроника.
 - 8. Пористый кремний и его применение в кремниевой микрофотонике.
 - 9. Технология аморфного и поликремния для электроники.
 - 10. Углеродные кластеры и их применение в наноэлектронике.
 - 11. Методы анализа наноструктур и материалов.
 - 12. Гетеро- и наноэлектроника.
 - 13. Интеллектуальная силовая электроника.
 - 14. Спутниковая, сотовая, мобильная и оптоволоконная связи.

3.3 Экзаменационные вопросы

- 1. Этапы развития электроники.
- 2. Основные идеи микроэлектроники и наноэлектроники, функциональной электроники.
- 3. Молекулярно-лучевая эпитаксия.
- 4. Ионно-лучевые технологии.
- 5. Литография: электронная, рентгеновская, ионная.
- 6. Ионное легирование полупроводников.
- 7. Инструментальные методы нанотехнологии.
- 8. Материалы для высокотемпературной полупроводниковой электроники: SiC, TiC, BC.
- 9. Свойства карбида кремния.
- 10. Приборы на основе SiC.
- 11. Квантово-размерные эффекты. Сверхрешетки, квантовые точки.
- 12. Эволюция развития силовых полупроводниковых ключей.
- 13. IGBТ-транзисторы.
- 14. Интеллектуальные силовые модули.
- 15. Сверхмощные полупроводниковые ключи новых технологий.
- 16. Нанонаука: нанотехнологии, наноинженерия.
- 17. ACM, CTM.
- 18. Гетеролазеры и их применение.

- 19. Высокотемпературная сверхпроводимость.
- 20. Материалы высокотемпературной сверхпроводимости.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

4.1 Основная литература

- 1. Троян П.Е. Актуальные проблемы современной электроники и наноэлектроники: Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 224 с. [электронный ресурс]. http://miel.tusur.ru/images/files/Uchebno-metodicheskii kompleks% 20disciplin/Troyan/Troyan APE UP.pdf
- 2. Анищенко, Е. В. Технология кремниевой наноэлектроники: Учебное пособие [Электронный ресурс] / Анищенко Е. В., Данилина Т. И., Кагадей В. А. Томск: ТУСУР, 2011. 263 с. Режим доступа: https://edu.tusur.ru/publications/552

4.2 Учебно-методические пособия и программное обеспечение

- 1. Процессы микро- и нанотехнологии: учеб. пособие / Данилина Т.И. [и др.]. Томск: ТУСУР, 2005. 316 с. (103)
- 2. Данилина Т.И. Технология СБИС: учебн. пособие / Т.И. Данилина, В.А. Кагадей. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 287 с. (51)
- 3. Силовые полупроводниковые ключи: семейства, характеристики, применение / П.А. Воронин. 2-е изд. М.: ДОДЭКА-ХХІ, 2005. 384 с. (16)
- 4. Основы силовой электроники: учебное пособие для вузов / Г.С. Зиновьев. 2-е изд., испр. и доп. Новосибирск: НГТУ, 2003.-664 с. (79)
- 5. Драгунов В.П. Основы наноэлектроники: учебное пособие для вузов. М.: Физматкнига, 2006; М.: Логос, 2006; М.: Университетская книга, 2006. 494 с. (32)
- 6. Электроника и микропроцессорная техника: Учебник для вузов / В.Г. Гусев, Ю.М. Гусев. 4-е изд., доп. М.: Высшая школа, 2006. 800 с. (78)
- 7. Твердотельная электроника: Учебное пособие для вузов / В.А. Гуртов. 2-е изд., доп. М.: Техносфера, 2005. 408 с. (88)

4.3 Учебно-методические пособия и программное обеспечение

1. Троян П.Е. Актуальные проблемы современной электроники и наноэлектроники: Учебнометодическое пособие по аудиторным практическим и семинарским занятиям и самостоятельной работе для студентов, обучающихся по направлению 210100 «Электроника и наноэлектроника». — Томск: Томский государственный университет систем управления и радиоэлектроники, 2013. — 32 с. — [электронный ресурс]. — http://miel.tusur.ru/images/files/Uchebno-metodicheskii_kompleks%20disciplin/Troyan/Troyan_APE_UMP.pdf

4.4 Базы данных, информационно-справочные и поисковые системы

- 1. Образовательный портал в свободном доступе: «Физика, химия, математика студентам и школьникам. Образовательный проект А.Н. Варгина» Режим доступа: http://www.ph4s.ru/
- 2. «Единое окно доступа к образовательным ресурсам» [Электронный ресурс]: информационная система. Режим доступа: http://window.edu.ru/
- 3. «eLIBRARY.RU» [Электронный ресурс]: научная электронная библиотека. Режим доступа: http://elibrary.ru
- 4. «Научно-образовательный портал ТУСУР» [Электронный ресурс]: научно-образовательный портал университета. Режим доступа: http://edu.tusur.ru/