МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

УТВЕРЖДАЮ

Проректор по учебной работе					
П.Е.Троян					
«	»	2017 г.			

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ GRID-TEXHOЛОГИИ

. 7	
у ровень осно	вной образовательной программы бакалавриат
Направление	подготовки 09.03.01 – Информатика и вычислительная техника.
Профиль(и)	Программное обеспечение средств вычислительной техники и автоматизированных
систем	
Форма обучен	ия:
Факультет: _	ЗиВФ, Заочный и вечерний факультет
Кафедра:	АСУ, Кафедра автоматизированных систем управления
Курс	5
Семестр	10
Учебный пла	н набора
Распрананани	a nafauara prawauu

Виды учебной работы	Всего	Семестр 10	Единицы
Лекции	6	6	часов
Лабораторные работы	16	16	часов
Практические занятия	не преду	часов	
Курсовой проект/работа (КРС) (аудиторная)	не преду	часов	
Всего аудиторных занятий	22	22	часов
Из них в интерактивной форме	8	8	часов
Самостоятельная работа студентов (СРС)	82	82	Часов
Самост. работа на подготовку и сдачу зачета	4	4	часов
Общая трудоемкость	108	108	часов
(в зачетных единицах)	3	3	3ET

Контрольная работа – 10 семестр

Зачет – 10 семестр

Рассмотрена	и од	обрена на	заседании	кафедры
протокол №	1	от «_12	» <u> </u>	2017 г.

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки 09.03.01 **Информатика и вычислительная техника** (квалификация (степень) "бакалавр"), утвержденного Приказом Министерства образования и науки Российской Федерации от 12 января 2016 г. N 5.

Программа рассмотрена и утверждена протокол № 1 от "12" января 2	. .	,
Разработчик, к.т.н., доцент каф. АСУ		Н.П. Фефелов
Зав. обеспечивающей кафедрой АСУ д.т.н., профессор		А.М. Кориков
Рабочая программа согласована с факу. ми специальности.	льтетом, профилирующей и	выпускающей кафедра
Декан ЗиВФ		И.В. Осипов
Заведующий профилирующей и выпускающей кафедрой АСУ, д.т.н., профессор		А.М. Кориков
Эксперт: Кафедра АСУ, доцент, к.т.н.		А.И. Исакова

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ И ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

Целями преподавания дисциплины являются:

- формирование у студентов знаний в области технологий управления ресурсами распределенных систем;
- формирование у студентов знаний и понимания особенностей использования GRID-технологий в распределенных супервычислених, «высокопоточных» вычислениях, вычислениях «по требованию» и в коллективных вычислениях;
- формирование у студентов понимания перспектив развития глобальной инфраструктуры, интегрирующей мировые компьютерные ресурсы для реализации крупномасштабных информационновычислительных проектов;
- формирование у студентов способности самостоятельного изучения отдельных тем дисциплины и решения типовых задач при реализации GRID-проектов;
- формирование у студентов навыков работы по использованию и применению инструментария программирования современных распределенных приложений;
- формирование у студентов мотивации к самообразованию за счет активизации самостоятельной познавательной деятельности.

Изучение курса поддерживается расширенным лабораторным практикумом.

Основной <u>задачей</u> изучения дисциплины является формирование у студентов теоретических знаний и практических навыков разработки алгоритмов и программ с использованием GRID-технологий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «GRID-технологии» входит в вариативную часть профессионального цикла, дисциплина по выбору.

Для её успешного усвоения необходимы знания базовых понятий математики и вычислительной техники, умения применять вычислительную технику для решения практических задач, владения навыками работы на персональном компьютере и создания профессиональных программных продуктов.

Успешное овладение дисциплиной базируется на дисциплинах:

- «ЭВМ и периферийные устройства»;
- «Основы разработки программного обеспечения»;
- «Сети и коммуникации»;
- «Распределенные вычислительные системы».

Знания и навыки, приобретенные в результате изучения дисциплины, используются при выполнении выпускной квалификационной работы и в подготовке магистров по дисциплинам:

- «Архитектура вычислительных комплексов»;
- «Технология разработки программного обеспечения»;
- «Распределенные сервис-ориентированные системы».

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «GRID-технологии» направлен на формирование следующих компетенций:

- Способность осваивать методики использования программных средств для решения практических задач (ОПК-2);
- Способность разрабатывать компоненты аппаратно-программных комплексов и баз данных, используя современные инструментальные средства и технологии программирования (ПК-2).

В результате изучения дисциплины студент должен: Знать:

- Методы распределенных вычислений для задач вычислительной математики (матричные вычисления, решение систем линейных уравнений, сортировка, обработка графов, уравнения в частных производных, многоэкстремальная оптимизация).
 - Основные подходы к разработке распределенных программ.

Уметь:

- Строить модель выполнения распределенных программ.
- Оценивать эффективности распределенных вычислений.
- Анализировать сложность вычислений и возможность распараллеливания разрабатываемых алгоритмов.
- Применять общие схемы разработки распределенных программ для реализаций собственных алгоритмов.

Согласована на портале № 17544

— Оценивать основные параметры получаемых распределенных программ, таких как ускорение, эффективность и масштабируемость.

Владеть:

– Основами разработки распределенных программ для MBC с применением технологий MPI, OpenMP, CUDA.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 3 зачетных единицы.

Вид учебной работы	Всего часов	Семестр 10
Аудиторные занятия (всего)	22	22
В том числе:		
Лекции	6	6
Лабораторные работы (ЛР)	16	16
Практические занятия (ПЗ)	_	_
Семинары (С)	-	_
Курсовой проект/(работа) (аудиторная нагрузка)	-	_
Самостоятельная работа (всего)	82	82
В том числе:		
Курсовой проект (работа) (самостоятельно)	-	_
Расчетно-графические работы	_	_
Проработка лекционного материала	16	16
Подготовка к лабораторным работам	24	24
Подготовка к практическим занятиям	-	_
Самостоятельное изучение тем теоретической части	42	42
Подготовка к экзамену	-	_
Вид промежуточной аттестации (зачет)	4	4
Общая трудоемкость час	108	108
зач. ед. (до сотых долей)	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

Таблица 5.1

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия	Самост. работа студентов	Всего часов	Формируємые ком- петенции (ОК, ПК)
1	2	3	4	5	7	8	9
1.	Тема 1. Технологии управления ресурсами распределенных систем				4	4	ОПК-2, ПК-2
2.	Тема 2. Многоуровневая система служб управления данными в GRID технологиях	1			12	13	ОПК-2, ПК-2
3.	Тема 3. Тиражирование данных как процесс управления копиями				4	4	ОПК-2, ПК-2
4.	Тема 4. Вычислительная GRID- инфраструктура	2	8		24	34	ОПК-2, ПК-2
5.	Teмa 5. Использования GRID-техно-логий в коллективных вычислениях	2	8		22	32	ОПК-2, ПК-2
6.	Тема 6. Облачные вычисления. Многослойная архитектура облачных приложений	1			16	17	ОПК-2, ПК-2
	ВСЕГО	6	16		82	104	

5.2. Содержание разделов дисциплины (по лекциям)

Таблица 5.2

$N_{\underline{0}}$	Наименование раз-	Содержание разделов	Трудо-	Формируе-
п/п	делов		емкость	мые компе-
			(час.)	тенции
				(ОК, ПК)
1	2	3	4	5
	Технологии управле-	Основные определения в GRID-системах. Обоснование		ОПК-2,
1.	ния ресурсами рас-	потребности в использовании высокопроизводительных		ПК-2
	пределенных систем	сетей.		
	Многоуровневая си-	Многоуровневая система служб для управления данными в	1	ОПК-2,
2.	стема служб управле-	GRID-технологиях. Службы верхнего, промежуточного,		ПК-2
۷.	ния данными в GRID	нижнего уровней. Управление тиражированием (Replica		
	гехнологиях	Management).		
	Тиражирование дан-	Тиражирование данных как процесс управления копиями.		ОПК-2,
3.	ных как процесс	Стратегия кэширования. Син-хронизация реплик Стратегия		ПК-2
٥.	управления копиями	обновления и создания реплик. Стратегия обновления и		
	управления копиями	создания реплик.		
	Вычислительная	Использование GRID-технологий в распределенных и вы-	2	ОПК-2,
4.	GRID-	сокопоточных (High-Throughput Computing) супервычисле-		ПК-2
	инфраструктура	них.		
	Использование GRID-	Использование GRID-технологий в вычислениях «по	1	ОПК-2,
5.	гехнологий в коллек-	требованию» (On-Demand Computing) и в вычислениях с		ПК-2
٥.	тивных вычислениях	привлечением больших объемов распределенных данных		
	тивных вычислениях	(Data-Intensive Computing).		
6.	Облачные вычисле-	Многослойная архитектура облачных приложений, класси-	2	ОПК-2,
0.	ния.	фикация облаков. Компоненты облачных приложений.		ПК-2
		ВСЕГО	6	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

№ п/п	Наименование обеспечивающих (предыдущих) дисциплин и обеспечиваемыми (последующими) дисциплинами	№ № разделов данной дисциплины, для которых необходимо изучение обеспечивающих (предыдущих) дисциплин и обеспечиваемыми (последующими) дисциплинами							
		1	2	3	4	5	6	7	
	Предшествующие дисциплины								
1.	ЭВМ и периферийные устройства	+	+	+				+	
2.	Основы разработки программного обеспечения			+	+	+	+		
3.	Сети и коммуникации			+	+			+	
4.	Распределенные вычислительные системы			+	+			+	
	Последующие дисциплины								
1.	Подготовка и защита выпускной квалификационной работы	+	+	+	+	+	+	+	

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень компетенций	Лек	Лаб	CPC	Формы контроля	
				(примеры)	
ОПК-2	+	+	+	Опрос на лекции, проверка конспекта лекций, Проверка	
				программы, проверка дом. задания	
ПК-2	+	+	+	Опрос на занятиях, отчеты по лабораторным работам, тес	
				по домашнему заданию	

Л – лекция, Лаб – лабораторные работы, СРС – самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Для успешного освоения дисциплины применяются различные образовательные технологии, которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе, с учетом требований к объему занятий в интерактивной форме.

Технологии интерактивного обучения при разных формах занятий

	- I.		1 1 1 1	
	Формы	Лекции	Лабораторные занятия (час)	Всего
Методы		(час)		(час)
Работа в команде			2	2
Пресс-конференция			4	4
Поисковый метод		0,5	1	1,5
Игра		0,5		0,5
Итого интерактивных заг	нятий	1	7	8

Примечание.

- 1. «Работа в команде» происходит при коллективном обсуждении средств разработки параллельных программ в лабораторном практикуме.
- 2. «Поисковый метод» студенты используют при обсуждении графов параллельных методов решения вычислительных задач.
- 3. Основные результаты своих лабораторных работ (наиболее интересные исследования) студенты докладывают при помощи презентаций, устраивая подобие пресс-конференции.
- 4. Элементы игры используются на лекциях при изложении темы «Технология программирования ОрепМР» при объяснении организации параллельных секций и параллельных циклов, вовлекая студентов в игру «параллельные ручейки».

7. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

№	№ раздела дис-	Наименование лабораторных работ	Трудо-	ОК, ПК, ПСК
Π/Π	циплины из		емкость	
	табл. 5.1		(час.)	
1.		Возможности инструментальных наборов средств GRID-технологий (сокеты и коммуникационные библиотеки).	4	ОПК-2, ПК-2
2.	4, 5	лиотски). Обеспечение службы доступа высокого уровня и оптимизация глобальной пропускной способности с использованием GRID-кэшей.	4	ОПК-2, ПК-2
3.	6, 7	Осуществление глобального кэширования и создание локальных кэшей на основе систем массовой памяти.	8	ОПК-2, ПК-2
	·	ВСЕГО	16	

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ не предусмотрены РУП.

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

	J. CAMOCT	ONTENDITANT ADOTA			
No	№ раздела	Тематика самостоятельной	Трудо-	ОК, ПК	Контроль выполнения работы
Π/Π	дисциплины	работы	емкость		(Опрос, тест, дом.задание, и т.д)
	из табл. 5.1	(детализация)	(час.)		
1.	1÷6	Углубленная проработка	16	ОПК-2,	Опрос на занятиях (устно)
		лекционного материала		ПК-2	
2.	4 ÷ 6	Подготовка к лаборатор-	24	ОПК-2,	Отчет,
		ным занятиям		ПК-2	защита лаб. работы
3.	4 ÷ 6	Самостоятельное изучение	42	ОПК-2,	Домашнее задание, тест
		тем теоретической части		ПК-2	
]	ВСЕГО	82		

Темы для самостоятельного изучения (всего 42 час)

- 1. Оптимизация запросов и управление шаблоном доступа (Query Optimization & Access Pattern Management).
 - 2. Сравнение GRID и облачных вычислений.

Темы по контрольной работе

- 1. Наиболее распространенные облачные платформы.
- 2. Технологии управления ресурсами распределенных систем.

10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ – не предусмотрены РУП.

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

12.1 Основная литература

1. Олифер, В. Г., Олифер Н.А. Компьютерные сети: Принципы, технологии, протоколы. Учебник для вузов. - 4-е изд. - СПб.: ПИТЕР, 2013. – 944 с. (20 экз.).

12.2 Дополнительная литература

1. Таненбаум, Эндрю. Компьютерные сети [Текст]: научное издание / Э. Таненбаум, Д. Уэзеролл. - 5-е изд. - СПб.: ПИТЕР, 2013. - 960 с. (15 экз.)

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Распределенные сервис-ориентированные системы. Учебное пособие к <u>лабораторным работам</u> / Бойченко И.В. Томск: ТУСУР, 2012. [Электронный ресурс]. Режим доступа: http://eL.asu.tusur.ru/ (для зарегистрированных пользователей)
- 2. Фефелов Н.П. Grid-технологии. Методические указания по <u>самостоятельной</u> и индивидуальной работе студентов всех форм обучения для направления подготовки бакалавров 230100.62 Информатика и вычислительная техника. Профиль «Программное обеспечение средств вычислительной техники и автоматизированных систем». Томск: ТУСУР, 2014. 7 с. [Электронный ресурс]. Режим доступа: http://asu.tusur.ru/learning/bak230100/d45/b230100_d45 work.doc

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

1. Информационно-справочные и поисковые системы сетиИнтернет.

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для лабораторных работ

Для проведения лабораторных занятий используется учебно-исследовательская вычислительная лаборатория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 4 этаж, ауд. 437, 438, 439. Состав оборудования: Учебная мебель; Экран с электроприводом DRAPER

BARONET — 1 шт.; Мультимедийный проектор TOSHIBA — 1 шт.; Компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet, с мониторами типа Samsung 18.5" S19C200N— 10 шт.; Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3; Visual Studio 2008 EE with SP1; Microsoft Office Visio 2010; Microsoft SQL-Server 2005; Matlab v6.5.

13.1.3. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 1 этаж, ауд. 100. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 4 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационно-образовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностямиздоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 14.1.

Таблица 14.1 – Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных	Формы контроля и оценки результатов
	средств	обучения
С нарушениями слуха	Тесты, письменные самостоятельные	Преимущественно письменная проверка
	работы, вопросы к зачету, контрольные	
	работы	
С нарушениями зрения	Собеседование по вопросам к зачету,	Преимущественно устная проверка
17	опрос по терминам	(индивидуально)
	D	`
С нарушениями опор-	Решение дистанционных тестов, кон-	-
но- двигательного ап-	трольные работы, письменные самосто-	Преимущественно дистанционными
парата	ятельные работы, вопросы к зачету	методами

С ограничениями по	Тесты, письменные самостоятельные	Преимущественно проверка методами,
общемедицинским по-	работы, вопросы к зачету, контрольные	исходя из состояния обучающегося на
казаниям	работы, устные ответы	момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услугассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРЖДАЮ		
Пр	Проректор по учебной работе		
		П. Е. Троян	
«	>>	2017 г.	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ GRID-ТЕХНОЛОГИИ

Уровень основной образовательной программы бакалавриат
Направление подготовки
Профиль Программное обеспечение средств вычислительной техники и
автоматизированных систем
Форма обучения:
Факультет: ЗиВФ, Заочный и вечерний факультет
Кафедра: АСУ, Кафедра автоматизированных систем управления
Курс5
Семестр 10
Учебный план набора
Зачет10 семестр

2017

1. ВВЕДЕНИЕ

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «**GRID-технологии**» и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной «**GRID-технологии»** компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-2	Способность осваивать методики использования программных средств для решения практических задач	Знать: архитектуру параллельных компьютеров; принципы функционирования параллельных программ; основные технологии разработки параллельных программ. Уметь: составлять модели параллельных программ; использовать современные средства для разработки параллельных программ (MPI, OpenMP, CUDA); Владеть: стандартными средствами разработки и запуска параллельных программ на многопроцессорных вычислительных системах
ПК-2	Способность разрабатывать компоненты аппаратно-программных комплексов и баз данных, используя современные инструментальные средства и технологии программирования.	Знать: методы разработки параллельных алгоритмов; Уметь: разрабатывать программы в среде применяемой технологии параллельного программирования; Владеть: навыками разработки программных приложений в современных средах.

2. РЕАЛИЗАЦИЯ КОМПЕТЕНЦИЙ 2.1 Компетенция ОПК-2

<u>ОПК-2</u>: способность осваивать методики использования программных средств для решения практических задач.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Освоив методики использования программных средств, знает: — методы моделирования параллельных алгоритмов; технологии разработки параллельных и распределенных программ, — основные подходы к разработке распределенных программ.	Освоив методики использования программных средств умеет: — строить модель выполнения распределенных программ; — оценивать эффективности распределенных вычислений; — применять общие схемы разработки распределенных программ для реализаций собственных алгоритмов	Освоив методики использования программных средств владеет: — основами разработки распределенных программ для МВС с применением технологий МРІ, ОрепМР, CUDA.
Виды занятий	Лекции. Лабораторные занятия. Самостоятельная работа	Лабораторные работы; Самостоятельная работа	Лабораторные работы; Самостоятельная работа

Используемые средства оцени- вания	зашита отчетов по лаоора-	Проверка правильности алгоритмов и программ. Защита отчета по лабораторной работе. Зачет.	Проверка правильности алгоритмов и программ. Защита отчета по лабораторной работе. Зачет.
--	---------------------------	---	---

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по эта-

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости.	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем.	Контролирует работу, проводит оценку, совер-шенствует действия работы.
ХОРОШО (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области.	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования.	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем.
УДОВЛЕТВОРИТЕЛЬ НО (низкий уровень)	Обладает низким уровнем общих знаний.	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач.	Работает только при пря- мом наблюдении.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уро- вень)	Знает все методы анализа и разработки распределенных алгоритмов. Хорошо освоил функции передачи данных MPI; директивы и функции ОрепMP; для составления параллельных и распределенных программ.	Умеет разрабатывать и отлаживать эффективные распределенные алгоритмы и применение прикладного ПО любого уровня сложности с использованием современных технологий распределенного программирования.	Свободно владеет навыками разработки и отладки программ в современных технологиях параллельного программирования
ХОРОШО (базовый уро- вень)	Знает методы анализа и разработки параллельных алгоритмов. Освоил функции передачи данных МРІ; директивы и функции ОрепМР для составления параллельных и распределенных программ	Умеет разрабатывать и отлаживать распределенные алгоритмы. Применяет современные технологии параллельного программирования.	Владеет навыками разработки и отладки программ в современных технологиях параллельного программирования
УДОВЛЕ- ТВОРИ- ТЕЬНО (низ- кий уровень)	Знает некоторые методы разработки распределенных программ с применением технологий параллельного программирования.	Умеет разрабатывать и отлаживать типовые распределенные алгоритмы.	Владеет навыками разработки и отладки типовых распределенных программ.

2.2 Компетенция ПК-2

<u>ПК-2</u>: Способность разрабатывать компоненты аппаратно-программных комплексов и баз данных, используя современные инструментальные средства и технологии программирования.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Используя современные инструментальные средства и технологии программирования знает: — методы моделирования параллельных алгоритмов; технологии разработки параллельных и распределенных программ, — основные подходы к разработке распределенных программ.	Используя современные инструментальные средства и технологии программирования умеет: — строить модель выполнения распределенных программ; — оценивать эффективности распределенных вычислений; — применять общие схемы разработки распределенных программ для реализаций собственных алгоритмов.	Используя современные инструментальные средства и технологии программирования владеет: — основами разработки распределенных программ для МВС с применением технологий МРІ, OpenMP, CUDA.
Виды занятий	Лекции. Лабораторные занятия. Самостоятельная работа	Лабораторные работы; Самостоятельная работа	Лабораторные работы; Самостоятельная работа
Используемые средства оцени- вания	Устный опрос. Защита отчетов по лабораторным работам. Зачет.	Проверка правильности алгоритмов и программ. Защита отчета по лабораторной работе. Зачет.	Проверка правильности алгоритмов и программ. Защита отчета по лабораторной работе. Зачет.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Знает все методы анализа и разработки распределенных алгоритмов. Хорошо освоил функции передачи данных MPI; директивы и функции ОрепМР; для составления параллельных и распределенных программ.	Умеет разрабатывать и отлаживать эффективные распределенные алгоритмы и применение прикладного ПО любого уровня сложности с использованием современных технологий распределенного программирования.	Свободно владеет навы- ками разработки и отладки программ в современных технологиях параллельно- го программирования
ХОРОШО (базовый уровень)	Знает методы анализа и разработки параллельных алгоритмов. Освоил функции передачи данных MPI; директивы и функции ОрепМР для составления параллельных и распределенных программ	Умеет разрабатывать и отлаживать распределенные алгоритмы. Применяет современные технологии параллельного программирования.	Владеет навыками разра- ботки и отладки программ в современных технологи- ях параллельного про- граммирования
удовлетвори-	Знает некоторые методы	Умеет разрабатывать и отла-	Владеет навыками разра-

ТЕЬНО (низкий уровень)	разработки распределенных программ с применением	живать типовые распределенные алгоритмы.	ботки и отладки типовых распределенных про-
	технологий параллельного программирования.		грамм.

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе, приведенном ниже.

3.1 Темы лабораторных работ

- 1. Возможности инструментальных наборов средств GRID-технологий (сокеты и коммуникационные библиотеки).
- 2. Обеспечение службы доступа высокого уровня и оптимизация глобальной пропускной способности с использованием GRID-кэшей.
- 3. Осуществление глобального кэширования и создание локальных кэшей на основе систем массовой памяти.

3.2 Пример типовых вопросов к лабораторным работам

- 1. Список задач для высокопроизводительных систем. Основные определения. МВС. Суперкомпьютер. Кластер. Грид-система. HPC(eng). и др.
- 2. Классификации архитектур вычислительных систем. Классификации Флинна, Ванга-Бриггса, Фенга, Шора, Хендлера, Хокни, Скилликорна.
 - 3. Архитектуры SMP, MPP, PVP. Кластерная архитектура.
- 4. Особенности организации памяти в современных персональных компьютерах и MBC. Различные виды памяти. Различные архитектуры MBC по типу доступа к памяти. (UMA. NUMA, NORMA и т.д.) Классификация архитектур. Общая схема.
- 5. Иерархия памяти. Уровни иерархии. Времена доступа и размеры памяти на каждом уровне. Алгоритм миграции данных между различными уровнями кэш-памяти.
 - 6. Графические ускорители. Особенности организации памяти и вычислений. Шейдеры.
- 7. Способы организации высокопроизводительных процессоров: Ассоциативные процессоры. Клеточные и ДНК-процессоры. Нейронные процессоры. Процессоры с нечеткой логикой. Основные принципы функционирования, предпосылки развития альтернативных способов организации МВС, текущие трудности в реализации.
- 8. Специализированные процессоры. Коммуникационные процессоры. Конвейерные процессоры. Матричные процессоры. Применение. Основные принципы функционирования.
- 9. Топологии сетей МВС. Сферы применения. Свойства. Характеристики. Примеры использования.
- 10. Коммутаторы для МВС. Простые коммутаторы. Алгоритмы арбитража. Составные коммутаторы. Коммутатор Клоза. Баньян-сети.
- 11. Способы оценки производительности MBC. Методы оценки. Виды оценок. Принципы формирования top $500\,\mathrm{u}$.дp. top.
- 12. Надежность отказоустойчивость и другие характеристики МВС. Требования к компонентам МВС.
- 13. Ускорение и эффективность параллельных программ. Информационные зависимости по данным. Закон Амдала.
- 14. Многопоточное программирование: обзор технологий POSIX Threads, функции для создания и завершения потоков.
- 15. Проблема недетерминизма в многопоточных программах. Поддержка синхронизации потоков в POSIX Threads. Критические секции.
- 16. Общая характеристика пакета OpenMP. Последовательные и параллельные участки. Директивы распараллеливания.
 - 17. Директивы распределения работы в ОрепМР на примере распараллеливания циклов.
- 18. Устранение информационных зависимостей в циклах средствами OpenMP, директива reduction.
- 15. Общая характеристика библиотеки МРІ. Функции инициализации и завершения МРІпрограммы.

- 16. Определение номер процесса в МРІ. Функции попарной пересылки.
- 17. Применение шаблонов MPI_ANY_SOURCE, MPI_ANY_TAG, вычисления по типу «управляющий-рабочие».
- 18. Концепция грид-вычислений, понятие виртуальной организации. Область применения, виды и примеры грид-систем, классы грид-приложений.
- 19. Технологии построения грид-систем, ключевые функции промежуточного программного обеспечения и принципы реализации.
 - 20. Структура ППО gLite, основные сервисы. Обеспечение безопасности. Запуск грид-задания.
- 21. Феномен Big Data, проблемы хранения и обработки больших объемов данных. Модель программирования MapReduce. Инвертированный индекс. Параллельная обработка и агрегация результатов. Назначение, преимущества и недостатки MapReduce.
- 22. Реализация модели MapReduce на вычислительном кластере. Требования к реализации. Общая схема реализации.
- 23. Основные функции системы Google Map Reduce. Спекулятивное выполнение. Отказоустойчивость.
- 24. Реализация MapReduce в системе Hadoop. Архитектура Hadoop кластера. Особенности файловой системы Hadoop.
 - 25. Грид-системы из персональных компьютеров. Основные реализации.
- 26. Система BOINC. Принцип работы инфраструктуры. BOINC-менеджер, BOINC-клиент, сервер, серверная и клиентская части распределённого приложения.
- 27. Система BOINC. Основные понятия. Приложение, версия приложения, расчётный блок, результат, физические и логические имена файлов. Master-URL. Начисляемые баллы.
 - 28. Архитектура BOINC-сервера. Apache. MySQL, PHP. Демоны.
- 29. Основы работы с ОС Linux. Основные команды (touch, cp, mkdir, ssh). Обозначение пути к файлу. Пользователь root. Использование репозиториев.
 - 30. Основные этапы установки BOINC-сервера и создания проекта.
 - 31. Основные этапы развёртывания распределённого приложения в инфраструктуре BOINC.
 - 32. Основные функции DC-API.
- 33. Концепция облачных вычислений. Характерные черты облачных систем. Модели и примеры облачных сервисов. Отличие облачных систем от грид-систем

3.4. Темы контрольной работы

- 4. Наиболее распространенные облачные платформы.
- 5. Технологии управления ресурсами распределенных систем.

3.5. Вопросы для подготовки к теоретическому зачету (для студентов, которые не полностью выполнили все задания в течение семестра) по дисциплине «GRID-технологии»

- 1. Что такое Грид. Основные черты. Предпосылки возникновения и области применения.
- 2. Промежуточное программное обеспечение Грид. Основные функции. Существующие проекты.
 - 3. Проект EGEE. Цели проекта. Виртуальные организации.
 - 4. Основные подсистемы ППО gLite. Их назначение и взаимодействие.
 - 5. Основные типы сервисов и ресурсов gLite. Их назначение.
- 6. Безопасность в Грид. Центры сертификации. Пользовательские сертификаты. Ргохусертификат. Процедура получения доступа к грид-инфраструктуре.
- 7. Виртуальные организации. Сервис управления виртуальной организацией (VOMS):назначение, роли и группы пользователей. Ргоху-сертификат, атрибут-сертификат, vomsproxy-сертификат.
 - 8. Интерфейс пользователя: назначение, предоставляемая функциональность.
 - 9. Вычислительный элемент (СЕ): структура, основные функции.
- 10. Информационная система Грид. Её назначение. Структура информационной системы gLite.
 - 11. Информационный сервис MDS.
 - 12. Реляционная архитектура грид-мониторинга (R-GMA).
 - 13. Мониторинг: назначение, объекты мониторинга, способы получения информации.

- 14. Учет использования ресурсов: назначение, функционирование.
- 15. Элемент хранения данных (SE). Его назначение. Протоколы передачи и управления данными. Типы SE.
- 16. Имена файлов в gLite. Файловый каталог (LFC): назначение, предоставляемая функциональность.
 - 17. Системы управления загрузкой (WMS). Система протоколирования и учета (LB).
 - 18. Язык описания задач (JDL): назначение, основные jdl-атрибуты.
- 19. Типы задач в gLite. Простые, связанные, параметризованные задачи. Набор (коллекция) задач.
 - 20. Схема выполнения задач в gLite и их возможные состояния (статусы).
- 21. Операции с задачами: запуск, получение статуса, получение результата, отмена выполнения. Передача входных и выходных данных задачи.
- 22. Основные грид-проекты, среды распределенных вычислений и суперкомпьютеры. Их основные особенности.
- 23. SOA основы концепции. Выгоды, которые несет данный подход. Роль стандартов для SOA. Что такое SAAS. Базовые принципы. Перспективы развития. Применение SOA и SAAS в бизнесе и науке.
- 24. Виртуализация ресурсов и платформ. Основные типы виртуализации. Применение в бизнесе и науке.
- 25. Что такое WEB 2.0. Характерные черты. Базовые технологии. Его значение для Enterprise 2.0. Применение в бизнесе и науке.
- 26. Применение компьютерных технологий в науке. Вычисления, обмен данными, телеконференции, совместная работа на расстоянии.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе:

Учебное пособие по дисциплине «Grid-технологии» приведено в рабочей программе в разделе 12.1 [1].

- Олифер, В. Г., Олифер Н.А. Компьютерные сети: Принципы, технологии, протоколы. Учебник для вузов. 4-е изд. СПб.: ПИТЕР, 2013. 944 с. (20 экз.).
- 1) Методические указания по лабораторным работам для студентов всех форм обучения приведены в рабочей программе в разделе 12.3.1 [1].
- Распределенные сервис-ориентированные системы. Учебное пособие к <u>лабораторным</u> работам / Бойченко И.В. Томск: ТУСУР, 2012. [Электронный ресурс]. Режим доступа: http://eL.asu.tusur.ru/ (для зарегистрированных пользователей)
- 2) Методические указания по самостоятельной работе приведены в рабочей программе в разделе 12.3.1 [2].
- Фефелов Н.П. Grid-технологии. Методические указания по <u>самостоятельной</u> и индивидуальной работе студентов всех форм обучения для направления подготовки бакалавров 230100.62 Информатика и вычислительная техника. Профиль «Программное обеспечение средств вычислительной техники и автоматизированных систем». Томск: ТУСУР, 2014. 7 с. [Электронный ресурс]. Режим доступа: http://asu.tusur.ru/learning/bak230100/d45/b230100_d45_work.doc