МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

Томский государственный университет систем управления и радиоэлектроники

	УТВ	ЕРЖДАЮ
Пр	оректор по у	чебной работе
		П.Е. Троян
«		2017 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ДИСКРЕТНАЯ МАТЕМАТИКА

Уровень осно	овной образовательной программы бакалавриат						
Направление	Направление(я) подготовки (специальность) <u>09.03.03 Прикладная информатика</u>						
Профиль(и)	Трофиль(и) Прикладная информатика в экономике						
Форма обуче	ения:						
Факультет:	ЗиВФ, Заочный и вечерний факультет						
Кафедра	автоматизированных систем управления						
	1						
	1, 2						
Учебный пла	ан набора 2016 и последующих лет						
Роспрадовани	na nakanara pramanu.						

Распределение рабочего времени:

Виды учебной работы	Семестр 1	Семестр 2	Всего	Единицы
Лекции	6	2	8	часов
Лабораторные работы				часов
Практические занятия	6	4	10	часов
Курсовой проект/работа (КРС) (аудиторная)				часов
Всего аудиторных занятий	12	6	18	часов
из них в интерактивной форме	6	4	10	часов
Самостоятельная работа студентов (СРС)	85	68	153	часов
Всего (без экзамена)	97	74	171	часов
Самост. работа на подготовку и сдачу экзамена		9	9	часов
Общая трудоемкость	97	83	180	часов
(в зачетных единицах)			5	3.e.

Экзамен_	2 семестр		
Контроль	ная работа	2	семестр

Томск 2017

Рабочая программа по дисциплине составлена с учетом требований Федерального Государственного образовательного стандарта высшего профессионального образования (ФГОС ВО) по направлению подготовки 09.03.03 Прикладная информатика (квалификация (степень) "бакалавр"), утвержденного Приказом Министерства образования и науки Российской Федерации от 12 марта 2015 г. № 207, рассмотрена и утверждена на заседании кафедры 06 апреля 2017 г., протокол № 6.

Разработчик д.т.н., профессор	А.М. Кориков
Зав. обеспечивающей кафедрой АСУ д.т.н., профессор	А.М. Кориков
Рабочая программа согласована с факультетом, профилирующим кафедрами специальности.	ей и выпускающей
Декан, ЗиВФ	<u>И</u> .В. Осипов
Заведующий профилирующей и выпускающей кафедрой АСУ, д.т.н., профессор	А.М. Кориков
Эксперты: Кафелра АСУ. лоцент	А.И. Исакова

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Дисциплина «Дискретная математика» изучается во втором семестре и предусматривает чтение лекций, проведение практических работ, получение различного рода консультаций.

Целью дисциплины является формирование у студентов теоретических знаний и практических навыков по основам теории множеств, теории графов, булевой алгебры, комбинаторного анализа как аппарата для построения моделей дискретных систем. В процессе изучения дисциплины студенты знакомятся со спецификой методов решения практических задач, предлагаемых различными разделами дискретной математики. Использование вычислительной техники на практических занятиях помогает студентам приобрести навыки построения и исследования различных дискретных моделей.

Основной **задачей** изучения дисциплины является приобретение студентами прочных знаний и практических навыков в области, определяемой основной целью курса.

В результате изучения дисциплины "Дискретная математика" студенты должны знать основные положения изучаемых разделов дискретной математики, уметь формулировать и доказывать основные результаты этих разделов. В ходе практических занятий студенты должны приобрести навыки решения задач по всем разделам, в том числе, и с использованием ЭВМ.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «Дискретная математика» относится к числу дисциплин математического и естественнонаучного цикла (вариативной части). Успешное овладение дисциплиной предполагает некоторые предварительные знания по «Математика», линейной алгебре, а также основы программирования на языках высокого уровня. Знания и навыки, полученные при ее изучении, используются в последующих дисциплинах математического и естественнонаучного цикла: «Теория вероятностей и математическая статистика», «Численные методы» и др.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Дискретная математика» направлен на формирование следующих компетенций:

общепрофессиональные компетенции (ОПК):

– способностью использовать основные законы естественнонаучных дисциплин и современные информационно-коммуникационные технологии в профессиональной деятельности (ОПК-3);

профессиональные компетенции (ПК):

 способностью применять системный подход и математические методы в формализации решения прикладных задач (ПК-23).

В результате освоения содержания дисциплины «Дискретная математика» студент должен: знать

основы теории множеств, теории графов, булевой алгебры, элементы комбинаторного анализа;
 уметь

– применять комбинаторные конфигурации для решения задач, определять тип бинарного отношения и его свойства, выполнять операции над множествами, представлять графы различными способами, выполнять операции над графами, находить кратчайший путь в графе, строить таблицы истинности булевых функций, выполнять тождественные преобразования, находить СДНФ, СКНФ, определять минимальные ДНФ;

владеть

- навыками применения базового инструментария дискретной математики для решения прикладных задач;
- методикой построения, анализа и применения дискретных моделей в профессиональной деятельности.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 5 зачетных единиц.

Вид учебной работы	Всего часов	Всего часов (1 семестр)	Всего часов (2 семестр)
Аудиторные занятия (всего)	18	12	6
В том числе:			
Лекции	8	6	2
Лабораторные работы (ЛР)			
Практические занятия (ПЗ)	10	6	4
Семинары (С)-			
Курсовой проект/(работа) (аудиторная нагрузка)			
Другие виды аудиторной работы			
Самостоятельная работа (всего)	153	85	68
В том числе:			
Курсовой проект (работа) (самостоятельно)			
Выполнение контрольной работы	20		20
Проработка лекционного материала	35	25	10
Подготовка к практическим занятиям	35	25	10
Самостоятельное изучение тем теоретической части	63	35	28
Подготовка к экзамену	9		9
Вид промежуточной аттестации (зачет, экзамен)			Экзамен
Общая трудоемкость час	180	97	83
зач. ед	5		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

Таблица 5.1

No॒	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Всего	Формируемые
Π/Π	-		зан.	зан.			час.	компетенции
								(ОК, ПК)
1	2	3	4	5	6	7	8	9
	1 семестр							
1	Теория множеств	2	2			30	20	ОПК-3, ПК-23
2	Основы комбинаторного анализа	2	2			30	20	ОПК-3, ПК-23
3	Булева алгебра	2	2			25	64	ОПК-3, ПК-23
	2 семестр							
4	Теория графов	2	4			68	40	ОПК-3, ПК-23
ИТС	ИТОГО		10			153	171	

5.2. Содержание разделов дисциплины (по лекциям)

Таблина 5.2

I aoJ	<u>ица 5.2</u>					
No	Наименование	Содержание разделов	Трудое мкость	Формируемые компетенции		
п/п	разделов	• • • • • • • • • • • • • • • • • • • •	(час.)	(ОК, ПК)		
1	2	3	4	5		
1	Теория	Тема 1. Основные понятия теории множеств.	2	ОПК-3,		
	множеств	Основные термины. Операции над множествами. Свойства операций.		ПК-23		
	(1 семестр)	Тема 2. Отношения на множествах.				
		Понятие отношения на множестве. Свойства отношений. Виды				
		отношений. Отображения множеств.				
		Тема 3. Элементы теории нечетких множеств. Вводные понятия.				
		Нечеткие множества. Операции над нечеткими множествами.				
2	Основы	Тема 1. Предмет комбинаторного анализа.	2	ОПК-3,		
	комбинаторн	Виды задач комбинаторного анализа. Постановка и примеры задач		ПК-23		
	ого анализа	комбинаторного программирования.				
	(1 семестр)	Тема2. Основные понятия и операции комбинаторики.				
		Упорядоченные и неупорядоченные выборки. Обобщенные правила				
		суммы и произведения. Определение числа сочетаний и перестановок. Разложение на циклы. Размещения и заполнения.				
		Тема 3. Аппарат производящих функций.				
		Производящие функции для сочетаний и перестановок. Обычная и				

		экспоненциальная производящие функции.			
3	Булева	Тема 1. Булевы функции.	2	ОПК-3,	
	алгебра	Определение булевой функции. Булевы функции одной переменных.		ПК-23	
	(1 семестр)	Некоторые свойства элементарных булевых функций. Представление			
		булевых функций в совершенных дизъюнктивной и конъюнктивной			
		нормальных формах. Полнота системы булевых функций. Классы			
		функций, сохраняющих ноль и единицу. Классы самодвойственных,			
		монотонных и линейных функций. Теорема о полноте.			
		Тема 2. Синтез логических схем.			
		Автоматные описания систем управления. Понятие комбинационной			
		схемы. Автомат с памятью. Основные этапы синтеза комбинационных схем.			
4.	Теория	Тема 1. Основные определения.	2	ОПК-3,	
	графов	Способы задания графа. Ориентированные и неориентированные		ПК-23	
	(2 семестр)	графы. Цепи, циклы, пути, контуры графов. Частичные графы,			
		подграфы, частичные подграфы. Связность в графах. Изоморфизм			
		графов. Отношения на множествах и графы. Тема 2. Операции над графами			
		Декартова сумма графов.			
		Тема 3. Характеристики графов.			
		Матрицы смежности и инциденций графов. Степени графов.			
		Цикломатическое число. Хроматическое число. Множества			
		внутренней и внешней устойчивости.			
		Тема 4. Характеристики расстояний в графах.			
		Отклонение, отклоненность, радиус, диаметр, центр и периферийные			
		вершины графа.			
		ИТОГО	8		

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими)

дисциплинами и обеспечиваемыми (последующими) дисциплинами

№	Наименование обеспечивающих	№ № разделов данной дисциплины, для которых необходимо				
Π/Π	(предыдущих) дисциплин	изучение обеспечивающих (предыдущих) дисциплин			плин	
		1	2	3	4	
1.	Математика	+			+	

№ п/п	Наименование обеспечиваемых (последующих) дисциплин	№ № разделов данной дисциплины, которые обеспечивают изучение последующих дисциплин			еспечивают
		1	2	3	4
1	Теория вероятностей и математическая статистика		+	+	
2	Численные методы	+			+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

	C00	соответетьне компетенции, формируемых при изу тенни дисциплины, и видов запитии					
Перечень	Виды занятий			анятий		Форман компроня	
компетенций	Л	Пр	Лаб	КР/КП	CPC	Формы контроля	
ОПК-3	+	+				Устный опрос на лекции,	
						Отчет по практической работе,	
ПК-23	+	+			+	Устный ответ на практическом занятии, проверка	
						конспекта, дом. задание, тест	

 Π — лекция, Π р — практические и семинарские занятия, Π аб — лабораторные работы, $KP/K\Pi$ — курсовая работа / проект, CPC — самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Для успешного освоения дисциплины применяются различные образовательные технологии, которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе, с учетом требований к объему занятий в интерактивной форме.

Технологии интерактивного обучения при разных формах занятий

Формы	Лекции	Практические/семинарские	Всего
Методы	(час)	занятия (час)	(час)
Работа в команде		2	2
Поисковый метод		4	4
Решение ситуационных задач	4		4
Итого интерактивных занятий	4	6	10

Примечание.

- 1. «Работа в команде» происходит при коллективном выполнении заданий всех практических работ.
- 2. «Поисковый метод» студенты используют при выполнении заданий (первый раздел дисциплины).
- 3. Различные ситуационные моменты предлагаются студентам во время лекций.

7. ЛАБОРАТОРНЫЕ РАБОТЫ – не предусмотрены РУП.

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Практические занятия предусматривают закрепление основных вопросов по всем разделам дисциплины. Задания на практических занятиях выбираются из учебного методического пособия, указанного в литературе в разлеле 12.3.1 [1].

№ п/п	№ раздела дисциплины	Наименование практических занятий	Трудо- емкость (час.)	ОК, ПК	
		1 семестр			
1.		Алгебра множеств.		OTIV 2	
2.	1	Бинарные отношения.	2	ОПК-3, ПК-23	
3.		Нечеткие множества		11N-23	
4.	2	Основные формулы комбинаторики	2	ОПК-3,	
5.	2	Комбинаторные задачи	2	ПК-23	
6.	2	Минимизация булевых функций	2.	ОПК-3,	
7.	3	Нахождение сокращенных, тупиковых, минимальных ДНФ	2	ПК-23	
		2 семестр			
8.		Автоматные описания. Автоматы с памятью.			
9.	4	Операции над графами	4	ОПК-3,	
10.	4	Определение кратчайших путей в графе		ПК-23	
11.		Обход графов. Определение характеристик графов			
	ИТОГО 10				

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

	7. 0.1				
No	№ раздела	Тематика самостоятельной работы	Трудо-	ОК, ПК	Контроль выполнения
п/п	дисциплины	(детализация)	емкость		работы
	из табл. 5.1		(час.)		
1.	1÷4	Проработка лекционного материала	35	ОПК-3,	Опрос на занятиях
				ПК-23	(устно)
2.	1÷4	Подготовка к практическим занятиям	35	ОПК-3,	Отчет,
		_		ПК-23	защита практич. работ
3.	1, 3, 4	Самостоятельное изучение тем	63	ОПК-3,	Дом. задание, тест
		теоретической части		ПК-23	
4.		Выполнение контрольной работы	20		
5.	1÷4	Подготовка и сдача экзамена	36	ОПК-3,	Оценка за экзамен
				ПК-23	
	ИТО	ОГО (вместе с экзаменом)	162		

Темы для самостоятельного изучения

- 1. Экстремальные элементы множеств.
- 2. Булевы функции двух переменных.
- 3. Характеристики расстояний в графах.
- 4. Гамильтоновы обходы графа.

Варианты тем для контрольной работы

- 1. Основные свойства операций над нечеткими множествами.
- 2. Минимизация дизъюнктивных нормальных форм. Метод Квайна.
- 3. Определение путей в графах. Алгоритм Дейкстры. Обход графа. Эйлеровы цепи, циклы, пути, контуры.
- 10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ не предусмотрены РУП.
- 11. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА не предусмотрена для студентов ЗиВФ.

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

12.1. Основная литература

1. Шевелев, Ю.П. Основы дискретной математики : учебное пособие / Ю. П. Шевелев; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. - Томск : ТМЦДО, 2009. - 258 с. (13 экз.)

12.2 Дополнительная литература

- 1. Судоплатов, С. В. Дискретная математика: Учебник для вузов / С. В. Судоплатов, Е. В. Овчинникова; Министерство образования и науки Российской Федерации, Новосибирский государственный технический университет. 2-е изд., перераб. М.: Инфра-М, 2007; Новосибирск: НГТУ, 2007. 255 с. (20 экз.).
- 2. Шевелев, Ю.П. Дискретная математика : учебное методическое пособие / Ю. П. Шевелев ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТМЦДО, 2009. 109 с. (15 экз.)

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Колесникова, С.И. Дискретная математика [Электронный ресурс] : методические указания к **практическим занятиям** / С. И. Колесникова ; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск : [б. и.], 2012. on-line, 37 с. [электронный ресурс]. Режим доступа: http://edu.tusur.ru/training/publications/937
- 2. Колесникова, С.И. Дискретная математика [Электронный ресурс] : методические указания к **самостоятельной работе** / С. И. Колесникова ; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск : [б. и.], 2012. on-line, 18 с. Б. ц. [электронный ресурс]. Режим доступа: http://edu.tusur.ru/training/publications/939

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

- 1. www.compress.ru Журнал «КомпьютерПресс»
- 2. <u>www.isn.ru</u> Российская сеть информационного общества
- 3. http://www.soft-unity.ru сайт компании «Софт-Юнити»

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для практических работ

Для проведения практических занятий используется учебно-исследовательская вычислительная лаборатория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 4 этаж, ауд. 437, 438, 439. Состав оборудования: Учебная мебель; Экран с электроприводом DRAPER BARONET – 1 шт.; Мультимедийный проектор TOSHIBA – 1 шт.; Компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet, с мониторами типа Samsung 18.5" S19C200N– 10 шт.; Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3; Visual Studio 2008 EE with SP1; Microsoft Office Visio 2010; Microsoft SQL-Server 2005; графические редакторы Lightwave 3D, Corel Xara, Adobe Photoshop.

13.1.3. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 1 этаж, ауд. 100. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 4 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационно-образовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностямиздоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с** нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. ФОНЛ ОПЕНОЧНЫХ СРЕДСТВ

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 14.1.

Таблица 14.1 – Дополнительные средства оценивания для студентов с инвалидностью

	тельные средства оценивания для студенто	
Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обу-
		чения
		10111111
С навинания и англа	Тооти, ниогмании с сомостоятани и ко побо	Проциализатранна пногманная пророжи
С нарушениями слуха	Тесты, письменные самостоятельные рабо-	Преимущественно письменная проверка
	ты, вопросы к зачету, контрольные работы	
C	0.5	П
С нарушениями зрения	Собеседование по вопросам к зачету, опрос	Преимущественно устная проверка
	по терминам	(индивидуально)
С нарушениями опорно-	Решение дистанционных тестов, контроль-	
двигательного аппарата	ные работы, письменные самостоятельные	Преимущественно дистанционными
двигательного аппарата		
	работы, вопросы к зачету	методами
С ограничениями по об-	Тесты, письменные самостоятельные рабо-	Преимущественно проверка методами, ис-
щемедицинским показа-	ты, вопросы к зачету, контрольные работы,	ходя из состояния обучающегося на момент
мкин	устные ответы	проверки
11171111	j etiliste official	провории

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможно-

стямиздоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услугассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ПРИЛОЖЕНИЕ к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРЖДАЮ		
Пр	Проректор по учебной работе		
		П. Е. Троян	
«	»	2017 г.	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ДИСКРЕТНАЯ МАТЕМАТИКА

Уровень основной образовательной программы бакалавриат
Направление подготовки 09.03.03 – Прикладная информатика
Профиль(и) Прикладная информатика в экономике
Форма обучения:
Факультет: ЗиВФ, Заочный и вечерний факультет
Кафедра автоматизированных систем управления
Курс1
Семестр1, 2
Учебный план набора <u>2012, 2013, 2014, 2015, 2016</u> и последующих лет
Экзамен 2 семестр
Контрольная работа 2 семестр

Томск 2017

1. ВВЕДЕНИЕ

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «Дискретная математика» и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов. Перечень закрепленных за дисциплиной «Дискретная математика» компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-3	способность использовать ос-	Знать:
	новные законы естественнонауч-	основные понятия дискретной математики, методы дискрет-
	ных дисциплин и современные	ного анализа, алгоритмы теории графов.
	информационно-	Уметь:
	коммуникационные технологии	устанавливать связь между задачами из различных областей
	в профессиональной деятельно-	знаний и дискретной математикой, применять основные ме-
	сти	тоды и законы дискретной математики при формализации
		задач, анализа и синтеза информационных систем и процес-
		COB.
		Владеть:
		навыками применения дискретной математики в программи-
		ровании и инфокоммуникационных технологиях, навыками
		математического исследования процессов и явлений.
ПК-23	способность применять систем-	Знать:
	ный подход и математические	основы теории множеств, теории графов, булевой алгебры,
	методы в формализации решения	элементы комбинаторного анализа.
	прикладных задач	Уметь:
		пользоваться законами теории множеств для решения при-
		кладных задач, применять методы аппарата математической
		логики, решать задачи с помощью алгоритмов теории гра-
		фов.
		Владеть:
		навыками применения базового инструментария дискретной
		математики для решения прикладных задач, методикой по-
		строения, анализа и применения дискретных моделей в про-
		фессиональной деятельности.

2. РЕАЛИЗАЦИЯ КОМПЕТЕНЦИЙ

2.1 Компетенция ОПК-3

<u>ОПК-3</u>: способность использовать основные законы естественнонаучных дисциплин и современные информационно-коммуникационные технологии в профессиональной деятельности.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Знает основные методы дискретного анализа, алгоритмы теории графов.	Умеет устанавливать связь между задачами из различных областей знаний и дискретной математикой, применять основные методы и законы дискретной математики при формализации задач, анализа и синтеза информационных систем и процессов.	Владеет навыками моделирования прикладных задач методами дискретной математики.

Виды занятий	Лекции, практические занятия, групповые консультации	Практические занятия, выполнение домашнего задания, СРС	Практические занятия, СРС
Используемые средства оценивания	 Контрольная работа; Устный опрос; Контроль выполнения домашнего задания; Экзамен. 	 Проверка правильности вы- полнения практических заданий; Контрольная работа; Конспект самостоятельной работы; Экзамен. 	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совер- шенствует действия ра- боты
ХОРОШО (базовый уровень)	Знает факты, принципы, процессы, общие поня-тия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
УДОВЛЕТВОРИТЕЛЬНО (низкий уровень)	Обладает низким уров- нем общих знаний	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач	Работает только при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Все основные понятия, теоремы и их доказательства теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами различной сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, эффективно применять алгоритмы теории графов для практических задач, составлять и отлаживать программы, реализующие все изученные методы и алгоритмы дискретной математики.	Свободно владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, свободно владеть навыками реализации методов и алгоритмов дискретной математики различной сложности.

ХОРОШО (базовый уровень)	Основные теоремы и понятия теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами средней сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, применять алгоритмы теории графов для учебных задач, составлять программы, реализующие некоторые изученные методы и алгоритмы дискретной математики.	Владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, владеть навыками реализации основных методов и алгоритмов дискретной математики.
УДОВЛЕТВО- РИТЕЛЬНО (низкий уровень)	Некоторые понятия теории множеств, теории графов, булевой алгебры.	Выполнять простые операции над множествами и графами, находить СДНФ, СКНФ булевой функции, применять алгоритмы теории графов для учебных задач.	Владеть навыками применения базового инструментария дискретной математики для решения простых прикладных задач и программировании.

2.2 Компетенция ПК-23

ПК-23: способность применять системный подход и математические методы в формализации решения прикладных задач.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Знает основы теории множеств, теории графов, булевой алгебры, элементы комбинаторного анализа.	Умеет пользоваться законами теории множеств для решения прикладных задач, применять методы аппарата математической логики, решать задачи с помощью алгоритмов теории графов.	Владеет навыками применения базового инструментария дискретной математики для решения прикладных задач, методикой построения, анализа и применения дискретных моделей в профессиональной деятельности.
Виды занятий	Лекции, практические занятия, групповые консультации	Практические занятия, выполнение домашнего задания, СРС	Практические занятия, СРС
Используемые средства оценивания	 Контрольная работа; Устный опрос; Контроль выполнения домашнего задания; Экзамен. 	Проверка правильности выполнения практических заданий;Контрольная работа;Экзамен	Проверка правильности выполнения практических заданий;Контрольная работа;

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 6 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах	Обладает диапазоном практических умений, требуемых для развития	Контролирует работу, проводит оценку, совершенствует действия

	изучаемой области с пониманием границ применимости	творческих решений, абстрагирования проблем	работы
ХОРОШО (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
УДОВЛЕТВОРИТЕЛЬНО (низкий уровень)	Обладает низким уровнем общих знаний	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач	Работает только при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 7 – Показатели и критерии оценивания компетенции на этапах

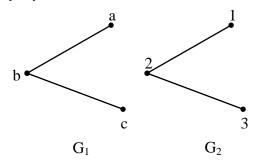
Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Все основные понятия, теоремы и их доказательства теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами различной сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, эффективно применять алгоритмы теории графов для практических задач, составлять и отлаживать программы, реализующие все изученные методы и алгоритмы дискретной математики.	Свободно владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, свободно владеть навыками реализации методов и алгоритмов дискретной математики различной сложности.
ХОРОШО (базовый уровень)	Основные теоремы и понятия теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами средней сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, применять алгоритмы теории графов для учебных задач, составлять программы, реализующие некоторые изученные методы и алгоритмы дискретной математики.	Владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, владеть навыками реализации основных методов и алгоритмов дискретной математики.
УДОВЛЕТВО- РИТЕЛЬНО (низкий уровень)	Некоторые понятия теории множеств, теории графов, булевой алгебры	выполнять простые операции над множествами и графами, находить СДНФ, СКНФ булевой функции, применять алгоритмы теории графов для учебных задач	владеть навыками применения базового инструментария дискретной математики для решения простых прикладных задач и программировании

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе, приведенном ниже.

3.1 Темы практических занятий

- 1. Алгебра множеств.
- 2. Бинарные отношения.
- 3. Нечеткие множества
- 4. Основные формулы комбинаторики
- 5. Комбинаторные задачи
- 6. Минимизация булевых функций
- 7. Нахождение сокращенных, тупиковых, минимальных ДНФ
- 8. Автоматные описания. Автоматы с памятью.
- 9. Операции над графами
- 10. Определение кратчайших путей в графе
- 11. Обход графов. Определение характеристик графов


3.2 Примеры вариантов заданий по практике

Пример варианта задания практических работ по теме «Теория множеств».

- 1. Найдите элементы множества P, если $A=\{0,2,3,7,8\}$, $B=\{1,3,6,7,9\}$, $C=\{0,1,4,7,8,9\}$, $I=\{0,1,2,3,4,5,6,7,8,9\}$. $P=(\overline{B}\cap C)\cup(\overline{A}\cap C)\cup(\overline{A}\cap B)$.
- 2. Дано отношение « $x + y \ge 7$ » на множестве $M = \{1,2,3,4,5,6\}$. Определите его свойства. Выпишите пары, принадлежащие заданному отношению.
- 3. Построить булеан множества $M = \{a,b,c,d\}$.
- 4. Решить задачу с помощью диаграмм Эйлера-Венна. На первом курсе обучаются 200 студентов, среди них 55 занимаются живописью, 61 музыкой, 68 спортом, 32 живописью и музыкой, 24 музыкой и спортом, 18 живописью и спортом, 7 человек занимается всеми тремя видами деятельности. Найти: а) Сколько человек ничем не занимается? б) Сколько человек занимается только спортом? в) Сколько человек занимается музыкой и живописью, но не спортом?

Пример варианта задания контрольной работы по теме «Графы».

- 1. Постройте граф отношения $\langle x y \leq 3 \rangle$ на множестве $M = \{1, 2, 3, 4, 5, 6, 7, 8\}$.
- 2. Определите свойства построенного графа.
- 3. Для построенного графа найдите:
- матрицу смежности (вершин);
- матрицу инцидентности;
- матрицу отклонений (расстояний);
- вектор отклоненностей (удаленностей);
- радиус, диаметр, центр, периферийные вершины;
- число внутренней и внешней устойчивости.
- 4. Для двух заданных графов, изображенных на рисунке, найдите декартово произведение и декартову сумму.

Пример варианта задания контрольной работы по теме «Булевы функции».

Булева функция трех переменных f(x1, x2, x3) принимает значение, равное 1, на наборах с номерами 2, 4, 5, 6.

- построить для этой функции таблицу истинности;
- определить, к каким классам функций она относится;
- найти СДНФ, СКНФ;
- найти минимальную ДНФ.

3.3. Темы для самостоятельной работы (темы рефератов)

- 1. Экстремальные элементы множеств.
- 2. Булевы функции двух переменных.
- 3. Характеристики расстояний в графах.
- 4. Гамильтоновы обходы графа.

3.4. Варианты тем для контрольной работы

- 1. Основные свойства операций над нечеткими множествами.
- 2. Минимизация дизъюнктивных нормальных форм. Метод Квайна.
- 3. Определение путей в графах. Алгоритм Дейкстры. Обход графа. Эйлеровы цепи, циклы, пути, контуры.

3.5 Вопросы для подготовки к экзамену

- 1. Основные определения теории множеств. Способы задания множеств.
- 2. Диаграммы Эйлера. Операции над множествами.
- 3. Разбиение множества на подмножества.
- 4. Декартово произведение множеств.
- 5. Понятие отношения на множествах. Свойства отношений.
- 6. Основные виды отношений на множествах.
- 7. Общие понятия теории графов. Способы задания графа. Связность графа. Изоморфизм. Плоские графы.
- 8. Маршруты: цепи, циклы, пути, контуры в графе.
- 9. Отношения на множествах и графы. Матрицы смежности и инциденций графа.
- 10. Объединение и пересечение графов. Декартово произведение графов.
- 11. Алгоритм Дейкстры определения кратчайших путей в графе.
- 12. Эйлеровы цепи, циклы. Теоремы Эйлера. Гамильтоновы цепи, циклы, пути, контуры.
- 13. Понятие высказывания. Операции над высказываниями.
- 14. Понятие предиката. Логика предикатов.
- 15. Определение булевой функции. Способы задания булевой функции.
- 16. Представление булевой функции в дизъюнктивной нормальной форме.
- 17. Представление булевой функции в конъюнктивной нормальной форме.
- 18. Минимизация ДНФ. Метод Квайна.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе:

- 1. Учебное пособие по дисциплине «Дискретная математика» приведено в рабочей программе в разделе 12.3 [1].
- <u>Шевелев, Ю.П.</u> Основы дискретной математики : учебное пособие / Ю. П. Шевелев; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТМЦДО, 2009. 258 с. (13 экз.)
- 2. Методические указания по самостоятельной и индивидуальной работе студентов всех форм обучения приведены в рабочей программе в разделе 12.3 [2].
- <u>Колесникова, С.И.</u> Дискретная математика [Электронный ресурс] : методические указания к самостоятельной работе / С. И. Колесникова ; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск : [б. и.], 2012. on-line, 18 с. Б. ц. [электронный ресурс]. Режим доступа: http://edu.tusur.ru/training/publications/933
 - 3. Методические указания к практическим занятиям приведены в рабочей программе в разделе 12.3 [1].
- <u>Колесникова, С.И.</u> Дискретная математика [Электронный ресурс] : методические указания к практическим занятиям / С. И. Колесникова ; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск : [б. и.], 2012. on-line, 37 с. [электронный ресурс]. Режим доступа: http://edu.tusur.ru/training/publications/937