МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

Томский государственный университет систем управления и радиоэлектроники

УТВЕРЖДАЮ

Проректор по учебной работе						
		П.Е. Троян				
«	»	2017 г.				

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ДИСКРЕТНАЯ МАТЕМАТИКА

Уровень осн	овной образовательной программы <u>Бакалавриат</u>
Направлени	е(я) подготовки (специальность): <u>09.03.01 Информатика и вычислительная техник</u>
Направленн	ость (профиль) программы - <u>Программное обеспечение средств вычислительной</u>
<u>техники и аг</u>	втоматизированных систем
Форма обуч	ения: заочная
Факультет:	ЗиВФ, Заочный и вечерний факультет
Кафедра	автоматизированных систем управления
Курс	1
Семестр	_1, 2
Учебный пл	ан набора 2012 и последующих лет
ъ	

Распределение рабочего времени:

Виды учебной работы	Семестр 1	Семестр 2	Всего
Лекции	6	2	8
Лабораторные работы	_	_	_
Практические занятия	6	4	10
Курсовой проект/работа (КРС) (аудиторная)	_	_	_
Всего аудиторных занятий	12	6	18
из них в интерактивной форме	6	4	10
Самостоятельная работа студентов (СРС)	78	75	153
Всего (без экзамена)	90	81	171
Самост. работа на подготовку и сдачу экзамена	_	9	9
Общая трудоемкость	90	90	180
(в зачетных единицах)			5 s.e.

Экзамен 2 семестр

Контрольная работа – 2 семестр

Томск 2017

2

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки 09.03.01 Информатика и вычислительная техника (квалификация (степень) "бакалавр"), утвержденного Приказом Министерства образования и науки Российской Федерации от 12 января 2016 г. N 5, рассмотрена и утверждена на заседании кафедры «6» апреля 2017 г., протокол № 6.

Разработчик д.т.н., профессор, зав. каф. АСУ	A.]	М. Кориков
Зав. обеспечивающей кафедрой АСУ		
д.т.н., профессор		А.М. Кориков
Рабочая программа согласована с факультетом, специальности.	, профилирующей и выпуск	сающей кафедрами
Декан, к.фм.н., доцент		И.В. Осипов
Заведующий профилирующей и выпускающей		
кафедрой АСУ, д.т.н., профессор		А.М. Кориков
Эксперты: Кафелра АСУ, лопент		А.И. Исакова

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Дисциплина «Дискретная математика» изучается во втором семестре и предусматривает чтение лекций, проведение практических работ, получение различного рода консультаций.

<u>Целью дисциплины</u> является формирование у студентов теоретических знаний и практических навыков по основам теории множеств, теории графов, булевой алгебры, комбинаторного анализа как аппарата для построения моделей дискретных систем. В процессе изучения дисциплины студенты знакомятся со спецификой методов решения практических задач, предлагаемых различными разделами дискретной математики. Использование вычислительной техники на практических занятиях помогает студентам приобрести навыки построения и исследования различных дискретных моделей.

Основной <u>задачей изучения дисциплины</u> является приобретение студентами прочных знаний и практических навыков в области, определяемой основной целью курса.

В результате изучения дисциплины "Дискретная математика" студенты должны знать основные положения изучаемых разделов дискретной математики, уметь формулировать и доказывать основные результаты этих разделов. В ходе практических занятий студенты должны приобрести навыки решения задач по всем разделам, в том числе, и с использованием ЭВМ.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «Дискретная математика» относится к числу дисциплин вариативной части обязательных дисциплин. Успешное овладение дисциплиной предполагает некоторые предварительные знания по линейной алгебре, а также основы программирования на языках высокого уровня. Знания и навыки, полученные при ее изучении, используются в последующих дисциплинах математического и естественнонаучного, а также профессионального циклов («Математическая логика и теория алгоритмов», «Теория вероятностей и математическая статистика», «Структуры и алгоритмы обработки данных на ЭВМ» и др.).

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- Процесс изучения дисциплины «Дискретная математика» направлен на формирование следующих компетенций:
- Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности. (ОПК-5);
- Способность разрабатывать модели компонентов информационных систем, включая модели баз данных и модели интерфейсов «человек электронно-вычислительная машина» (ПК-1).

В результате освоения содержания дисциплины «Дискретная математика» студент должен: знать основы теории множеств, теории графов, булевой алгебры, элементы комбинаторного анализа; уметь применять комбинаторные конфигурации для решения задач, определять тип бинарного отношения и его свойства, выполнять операции над множествами, представлять графы различными способами, выполнять операции над графами, находить кратчайший путь в графе, строить таблицы истинности булевых функций, выполнять тождественные преобразования, находить СЛНФ, СКНФ, определять минимальные ЛНФ:

владеть навыками применения базового инструментария дискретной математики для решения прикладных задач; методикой построения, анализа и применения дискретных моделей в профессиональной деятельности.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 5 зачетных единиц.

Вид учебной работы	Всего часов	1 семестр	(2 семестр)
Аудиторные занятия (всего)	18	12	6
В том числе:	_		
Лекции	8	6	2
Лабораторные работы (ЛР)	_		
Практические занятия (ПЗ)	10	6	4
Семинары (С)-	_		
Курсовой проект/(работа) (аудиторная нагрузка)	_		
Другие виды аудиторной работы	_		
Самостоятельная работа (всего)	153	78	75
В том числе:			
Курсовой проект (работа) (самостоятельно)	_		
Выполнение контрольной работы	21		21
Проработка лекционного материала	36	18	18
Подготовка к практическим занятиям	54	36	18
Самостоятельное изучение тем теоретической части	42	24	18
Подготовка к экзамену	9		9
Вид промежуточной аттестации (зачет, экзамен)	Экзамен		
Общая трудоемкость час	180	90	90
зач. е	ед 5		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

Таблица 5.1

No	Наименование	Лекц.	Практ.	Лаб.	Семин	CPC	Всего	Формируемые компетенции
Π/Π	раздела	отопед.	зан.	зан.		01.0	час.	(ОК, ПК)
	дисциплины							()
1	2	3	4	5	6	7	8	9
	1 семестр							
1	Теория множеств	3	4			39	46	ОПК-5, ПК-1
2	Основы комбинатор-ного анализа	3	2			39	44	ОПК-5, ПК-1
				2 c	еместр			
3	Булева алгебра	1	2			30	33	ОПК-5, ПК-1
4	Теория графов	1	2			45	49	ОПК-5, ПК-1
	ИТОГО	8	10			153	171	·

5.2. Содержание разделов дисциплины (по лекциям)

Таблица 5.2

№	Наименование	Содержание разделов	Трудо	Формируемые
п/п	разделов		емкост	компетенции
			ь (час.)	(ОК, ПК)
1	2	3	4	5
1	Теория	Тема 1. Основные понятия теории множеств.	3	ОПК-5,
	множеств	Основные термины. Операции над множествами.		ПК-1
		Свойства операций.		
		Тема 2. Отношения на множествах.		
		Понятие отношения на множестве. Свойства		
		отношений. Виды отношений. Отображения множеств.		
		Тема 3. Элементы теории нечетких множеств. Вводные		
		понятия. Нечеткие множества. Операции над нечеткими		

		J	1	
		множествами. Основные свойства операций над		
		нечеткими множествами.		
2	Основы	Тема 1. Предмет комбинаторного анализа.	3	ОПК-5,
_	комбинаторно-	Виды задач комбинаторного анализа. Постановка и		ПК-1
	го анализа	примеры задач комбинаторного программирования.		1110 1
	10 anamsa	Тема2. Основные понятия и операции комбинаторики.		
		Упорядоченные и неупорядоченные выборки.		
		Обобщенные правила суммы и произведения.		
		Определение числа сочетаний и перестановок.		
		Разложение на циклы. Размещения и заполнения.		
		Тема 3. Аппарат производящих функций.		
		Производящие функции для сочетаний и перестановок.		
		Обычная и экспоненциальная производящие функции.		
3	Булева алгебра	Тема 1. Булевы функции.	1	ОПК-5,
		Определение булевой функции. Булевы функции одной		ПК-1
		переменных. Некоторые свойства элементарных булевых		
		функций. Представление булевых функций в		
		совершенных дизьюнктивной и коньюнктивной		
		нормальных формах. Полнота системы булевых		
		функций. Классы функций, сохраняющих ноль и		
		единицу. Классы самодвойственных, монотонных и		
		линейных функций. Теорема о полноте. Минимизация		
		дизъюнктивных нормальных форм. Метод Квайна.		
		Тема 2. Синтез логических схем.		
		Автоматные описания систем управления. Понятие		
		комбинационной схемы. Автомат с памятью. Основные		
		этапы синтеза комбинационных схем.		
4.	Теория графов	Тема 1. Основные определения. Способы задания графа.	1	ОПК-5,
	1 11-	Ориентированные и неориентированные графы. Цепи,		ПК-1
		циклы, пути, контуры графов. Частичные графы,		
		подграфы, частичные подграфы. Связность в графах.		
		Изоморфизм графов. Отношения на множествах и графы.		
		Тема 2. Операции над графами Сумма графов.		
		Пересечение графов. Композиция графов. Транзитивное		
		замыкание графов. Декартово произведение графов.		
		Декартова сумма графов.		
		Тема 3. Характеристики графов.		
		Матрицы смежности и инциденций графов. Степени		
		графов. Цикломатическое число. Хроматическое число.		
		Множества внутренней и внешней устойчивости.		
		Тема 4. Характеристики расстояний в графах.		
		Отклонение, отклоненность, радиус, диаметр, центр и		
		периферийные вершины графа.		
		ИТОГО	8	
		11010	J	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) дисциплинами и обеспечиваемыми (последующими) дисциплинами

No	Наименование обеспечивающих (предыдущих)	№ № разделов данной дисциплины, для			
Π/Π	дисциплин	которых необходимо изучение			
		обеспечивающих (предыдущих) дисциплин			циплин
		1	2	3	4

1.	Математика	+			+	
№	Наименование обеспечиваемых (последующих)	№ № разделов данной дисциплины, которые				
Π/Π	дисциплин	обеспечивают изучение последующих				
		дисциплин	ł			
		1	2	3	4	
1	Математическая логика и теория алгоритмов	+		+	+	
2	Структуры и алгоритмы обработки данных				+	
3	Теория вероятностей и математическая					
	статистика		+			

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень	Виды занятий		Виды занятий			Формы контроля
компетенций	Л	Пр	Лаб	КР/КП	CPC	
ОПК-5	+	+			+	Устный опрос на лекции, Отчет по
						практической работе, дом. задание, тест
ПК-1	+	+			+	Опрос на лекции, устный ответ на
						практическом занятии, тест

 $[\]Pi$ — лекция, Π р — практические и семинарские занятия, Π аб — лабораторные работы, $KP/K\Pi$ — курсовая работа / проект, CPC — самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Для успешного освоения дисциплины применяются различные образовательные технологии, которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе, с учетом требований к объему занятий в интерактивной форме.

Технологии интерактивного обучения при разных формах занятий

Формы Методы	Лекции (час)	Практические/семинарск ие занятия (час)	Всего (час)
Работа в команде		4	4
Поисковый метод		2	2
Решение ситуационных задач	4		4
Итого интерактивных занятий	4	6	10

Примечание.

- 1. «Работа в команде» происходит при коллективном выполнении заданий всех практических работ.
- 2. «Поисковый метод» студенты используют при выполнении заданий (первый раздел дисциплины).
 - 3. Различные ситуационные моменты предлагаются студентам во время лекций.

7. ЛАБОРАТОРНЫЕ РАБОТЫ – не предусмотрены.

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Практические занятия предусматривают закрепление основных вопросов по всем разделам дисциплины. Задания на практических занятиях выбираются из учебного методического пособия, указанного в в 12.3.1 [1].

No	№ раздела	Наименование практических занятий	Трудо-	ОК, ПК	
Π/Π	дисциплины		емкость		
			(час.)		
	1 семестр				
1.		Алгебра множеств.		ОПК-5, ПК-1	
2.	1	Бинарные отношения.	4	ОПК-5, ПК-1	
3.		Нечеткие множества		ОПК-5, ПК-1	
4.	2	Основные формулы комбинаторики	2	ОПК-5, ПК-1	

5.	5. Комбинаторные задачи			ОПК-5, ПК-1	
		2 семестр			
6.		Минимизация булевых функций		ОПК-5, ПК-1	
7.	3	Нахождение сокращенных, тупиковых,	2	ОПК-5, ПК-1	
		минимальных ДНФ			
8.		Автоматные описания. Автоматы с памятью.		ОПК-5, ПК-1	
9.		Операции над графами		ОПК-5, ПК-1	
10.	4	Определение кратчайших путей в графе	2	ОПК-5, ПК-1	
11.		Обход графов. Определение характеристик		ОПК-5, ПК-1	
		графов			
	ИТОГО 10				

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

$N_{\underline{0}}$	№ раздела	Тематика самостоятельной работы	Трудо-	ОК, ПК	Контроль
Π/Π	дисциплины из	(детализация)	емкость		выполнения
	табл. 5.1		(час.)		работы
1.	1÷4	Проработка лекционного материала	36	ОПК-5,	Опрос на
				ПК-1	занятиях (устно)
2.	1÷4	Подготовка к практическим занятиям	54	ОПК-5,	Отчет,
		_		ПК-1	защита практич.
					работ
3.	1, 3, 4	Самостоятельное изучение тем	42	ОПК-5,	Дом. задание,
		теоретической части		ПК-1	тест
4.	3, 4	Выполнение контрольной работы	21	ОПК-5,	Защита работы
				ПК-1	
5.	1÷4	Подготовка и сдача экзамена	9	ОПК-5,	Оценка за экзамен
				ПК-1	
		ИТОГО	162		

Темы для самостоятельного изучения

- 1. Экстремальные элементы множеств.
- 2. Булевы функции двух переменны.
- 3. Характеристики расстояний в графах.
- 4. Гамильтоновы обходы графа.

Темы контрольной работы

- 1. Классы самодвойственных, монотонных и линейных функций. (Тема 3).
- 2. Определение путей в графах. Алгоритм Дейкстры. Обход графа (Тема 4).
- 3. Эйлеровы цепи, циклы, пути, контуры (Тема 4).

10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ – не предусмотрены.

11. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА – не предусмотрена.

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И В ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

12.1 Основная литература

1. Шевелев, Ю.П. Основы дискретной математики : учебное пособие / Ю. П. Шевелев ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. - Томск : ТМЦДО, 2009. - 258 с. (13 экз.)

12.2 Дополнительная литература

- 1. Судоплатов, С. В. Дискретная математика: Учебник для вузов / С. В. Судоплатов, Е. В. Овчинникова; Министерство образования и науки Российской Федерации, Новосибирский государственный технический университет. 2-е изд., перераб. М.: Инфра-М, 2007; Новосибирск: НГТУ, 2007. 255 с. (20 экз.).
- 2. Шевелев, Ю.П. Дискретная математика : учебное методическое пособие / Ю. П. Шевелев ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТМЦДО, 2009. 109 с. (15 экз.)

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- Колесникова, С.И. Дискретная математика [Электронный ресурс]: методические указания к самостоятельной работе / С.И. Колесникова; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск: [б. и.], 2012. on-line, 18 с. Б. ц. [электронный ресурс]. Режим доступа: http://edu.tusur.ru/training/publications/939
- Колесникова, С.И. Дискретная математика [Электронный ресурс] : методические указания к практическим занятиям / С. И. Колесникова ; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск : [б. и.], 2012. on-line, 37 с. [электронный ресурс]. Режим доступа: http://edu.tusur.ru/training/publications/937

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

1. Информационно-справочные и поисковые системы сетиИнтернет.

12.5 Internet-ресурсы

http://poiskknig.ru – электронная библиотека учебников Mex-Mata MГУ, Москва

http://www.mathnet.ru.ru/ - общероссийский математический портал

<u>http://www.lib.mexmat.ru</u> – электронная библиотека механико-математического факультета Московского государственного университета

http://onlinelibrary.wiley.com - научные журналы издательства Wiley&Sons

http://www.sciencedirect.com/ - научные журналы издательства Elsevier

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1. Общие требования к материально-техническому обеспечению дисциплины

Материально-техническое 9 13.1.1.

обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для практических работ

Для проведения л практических занятий используется учебно-исследовательская вычислительная лаборатория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 4 этаж, ауд. 437, 438, 439. Состав оборудования: Учебная мебель; Экран с электроприводом DRAPER BARONET – 1 шт.; Мультимедийный проектор TOSHIBA – 1 шт.; Компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet, с мониторами типа Samsung 18.5" S19C200N- 10 шт.; Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3; Visual Studio 2008 EE with SP1; Microsoft Office Visio 2010; Microsoft SQL-Server 2005; Matlab v6.5.

13.1.3. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 1 этаж, ауд. 100. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 4 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационнообразовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностямиздоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов с нарушениями зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 14.1.

Таблица 14.1 – Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки резуль-
		татов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы,	Преимущественно письменная
	вопросы к зачету, контрольные работы	проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по	Преимущественно устная
	терминам	проверка (индивидуально)

С нарушениями опор-	Решение дистанционных тестов, контрольные	
но- двигательного ап-	работы, письменные самостоятельные работы,	Преимущественно
парата	вопросы к зачету	дистанционными методами
С ограничениями по	Тесты, письменные самостоятельные работы,	Преимущественно проверка мето-
общемедицинским по-	вопросы к зачету, контрольные работы, устные	дами, исходя из состояния обуча-
казаниям	ответы	ющегося на момент проверки

14.2Методические рекомендации по оценочным средствам для лиц с ограниченными возможностямиздоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ПРИЛОЖЕНИЕ к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРЖДАЮ		
Проректор по учебной работе			
	П. Е. Троян		
«»2017 г.			

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ДИСКРЕТНАЯ МАТЕМАТИКА

Уровень основной образовательной программы Бакалавриат
Направление(я) подготовки (специальность): <u>09.03.01 Информатика и вычислительная техника</u>
Направленность (профиль) программы - <u>Программное обеспечение средств вычислительной</u>
техники и автоматизированных систем
Форма обучения:
Факультет: ЗиВФ, Заочный и вечерний факультет
Кафедраавтоматизированных систем управления
Учебный план набора 2012 года

Курс	Семестр	Учебный план	Форма контроля, семестр
		набора	
1	2	2012	Экзамен, 2 семестр
			Контрольная работа, 2 семестр

Томск 2017

1. ВВЕДЕНИЕ

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «Дискретная математика» и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов. Перечень закрепленных за дисциплиной «Дискретная математика» компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-5	 Способность решать 	<u>Знать:</u>
	стандартные задачи профес-	основные понятия дискретной математики, методы
	сиональной деятельности на	дискретного анализа, алгоритмы теории графов.
	основе информационной и	Уметь:
	библиографической культуры	устанавливать связь между задачами из различных об-
	с применением информаци-	ластей знаний и дискретной математикой, применять
	онно-коммуникационных	основные методы и законы дискретной математики при
	технологий и с учетом ос-	формализации задач, анализа и синтеза информацион-
	новных требований информа-	ных систем и процессов.
	ционной безопасности.	Владеть:
		навыками применения дискретной математики в про-
		граммировании и инфокоммуникационных технологи-
		ях, навыками математического исследования процессов
		и явлений.
ПК-1	 Способность разраба- 	Знать:
	тывать модели компонентов	основы теории множеств, теории графов, булевой ал-
	информационных систем,	гебры, элементы комбинаторного анализа.
	включая модели баз данных и	Уметь:
	модели интерфейсов «человек	пользоваться законами теории множеств для решения
	– электронно-вычислительная	прикладных задач, применять методы аппарата мате-
	машина»	матической логики, решать задачи с помощью алго-
		ритмов теории графов.
		Владеть:
		навыками применения базового инструментария дис-
		кретной математики для решения прикладных задач,
		методикой построения, анализа и применения дискрет-
		ных моделей в профессиональной деятельности.

2. РЕАЛИЗАЦИЯ КОМПЕТЕНЦИЙ

2.1 Компетенция ОПК-5

— <u>ОПК-5</u>: Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Благодаря применению применением информаци-	Благодаря применению применением информаци-	Благодаря примене- нию применением

-		13	
	онно-коммуникационных технологий знает основные методы дискретного анализа, алгоритмы теории графов.	онно-коммуникационных технологий умеет устанавливать связь между задачами из различных областей знаний и дискретной математикой, применять основные методы и законы дискретной математики при формализации задач, анализа и синтеза информационных систем и процессов.	информационно-коммуникационных технологий владеет навыками моделирования прикладных задач методами дискретной математики.
Виды занятий	Лекции, практические занятия, групповые консультации	Практические занятия, выполнение домашнего задания, СРС	Практические занятия, СРС
Используемые средства оценивания	 Контрольная работа; Устный опрос; Контроль выполнения домашнего задания; Экзамен. 	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы; Экзамен. 	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
ХОРОШО (базовый уровень)	Знает факты, принци- пы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
УДОВЛЕТВОРИТЕЛЬНО (низкий уровень)	Обладает низким уровнем общих знаний	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач	Работает только при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
--------------------------	-------	-------	---------

		T T
Все основные понятия, теоремы и их доказательства теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами различной сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, эффективно применять алгоритмы теории графов для практических задач, составлять и отлаживать программы, реализующие все изученные методы и алгоритмы дискретной математики.	Свободно владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, свободно владеть навыками реализации методов и алгоритмов дискретной математики различной сложности.
Основные теоремы и понятия теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами средней сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, применять алгоритмы теории графов для учебных задач, составлять программы, реализующие некоторые изученные методы и алгоритмы дискретной математики.	Владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, владеть навыками реализации основных методов и алгоритмов дискретной математики.
Некоторые понятия теории множеств, теории графов, булевой алгебры.	Выполнять простые операции над множествами и графами, находить СДНФ, СКНФ булевой функции, применять алгоритмы теории графов для учебных задач.	Владеть навыками применения базового инструментария дискретной математики для решения простых прикладных задач и программировании.
	ремы и их доказательства теории множеств, теории графов, булевой алгебры. Основные теоремы и понятия теории множеств, теории графов, булевой алгебры. Некоторые понятия теории множеств, теории графов, булевой алгебры.	теории множеств, теории графов, булевой алгебры. Множествами и графами различной сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, эффективно применять алгоритмы теории графов для практических задач, составлять и отлаживать программы, реализующие все изученные методы и алгоритмы дискретной математики. Основные теоремы и понятия теории множеств, теории графов, булевой алгебры. Выполнять операции над множествами и графами средней сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, применять алгоритмы теории графов для учебных задач, составлять программы, реализующие некоторые изученные методы и алгоритмы дискретной математики. Некоторые понятия теории множеств, теории графов, булевой алгебры. Выполнять простые операции над множествами и графами, находить СДНФ, СКНФ булевой функции, применять алгоритмы теории графов

2.2 Компетенция ПК-1

- **ПК-1:** Способность разрабатывать модели компонентов информационных систем, включая модели баз данных и модели интерфейсов «человек – электронно-вычислительная машина».

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Благодаря способности разрабатывать модели компонентов информационных систем знает основы теории множеств, теории графов, булевой алгебры, элементы комбинаторного анализа.	Благодаря способности разрабатывать модели компонентов информационных систем умеет пользоваться законами теории множеств для решения прикладных задач, применять методы аппарата математической логики, решать задачи с по-	Благодаря способности разрабатывать модели компонентов информационных систем владеет навыками применения базового инструментария дискретной математики для решения прикладных задач, методикой построения, анализа и применения дискретных моде-

		мощью алгоритмов теории графов.	лей в профессиональной дея- тельности.
Виды занятий	Лекции, практические занятия, групповые консультации	Практические занятия, выполнение домашнего задания, СРС	Практические занятия, СРС
Используемые средства оценивания	Контрольная работа;Устный опрос;Контроль выполнения домашнего задания;Экзамен.	Проверка правильности выполнения практических заданий;Контрольная работа;Экзамен	Проверка правильности выполнения практических заданий;Контрольная работа;

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Все основные понятия, теоремы и их доказательства теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами различной сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, эффективно применять алгоритмы теории графов для практических задач, составлять и отлаживать программы, реализующие все изученные методы и алгоритмы дискретной математики.	Свободно владеть навыками применения инструментария дискретной математики для решения прикладных задач и программировании, свободно владеть навыками реализации методов и алгоритмов дискретной математики различной сложности.
ХОРОШО (базовый уровень)	Основные теоремы и понятия теории множеств, теории графов, булевой алгебры.	Выполнять операции над множествами и графами средней сложности, находить СДНФ, СКНФ, минимальную ДНФ булевой функции, применять алгоритмы теории графов для учебных задач, составлять программы, реализующие некоторые изученные методы и алгоритмы дискретной математики.	Владеть навыками применения инстру- ментария дискретной математики для ре- шения прикладных задач и программи- ровании, владеть навыками реализации основных методов и алгоритмов дискрет- ной математики.
УДОВЛЕТВО- РИТЕЛЬНО (низкий уровень)	Некоторые понятия теории множеств, теории графов, булевой алгебры	выполнять простые операции над множествами и графами, находить СДНФ, СКНФ булевой функции, применять алгоритмы теории графов	владеть навыками применения базового инструментария дискретной математики для решения простых прикладных задач и

_	1	U		
		для учебных задач	программировании	

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе, приведенном ниже.

3.1 Темы практических занятий

- 1. Алгебра множеств.
- 2. Бинарные отношения.
- 3. Нечеткие множества
- 4. Основные формулы комбинаторики
- 5. Комбинаторные задачи
- 6. Минимизация булевых функций
- 7. Нахождение сокращенных, тупиковых, минимальных ДНФ
- 8. Автоматные описания. Автоматы с памятью.
- 9. Операции над графами
- 10. Определение кратчайших путей в графе
- 11. Обход графов. Определение характеристик графов

3.2 Примеры вариантов контрольных работ

Пример варианта задания контрольной работы по теме «Теория множеств».

- 1. Найдите элементы множества P, если $A=\{0,2,3,7,8\}$, $B=\{1,3,6,7,9\}$, $C=\{0,1,4,7,8,9\}$, $I=\{0,1,2,3,4,5,6,7,8,9\}$. $P=(\overline{B}\cap C)\cup(\overline{A}\cap C)\cup(\overline{A}\cap B)$.
- 2. Дано отношение « $x + y \ge 7$ » на множестве $M = \{1,2,3,4,5,6\}$. Определите его свойства. Выпишите пары, принадлежащие заданному отношению.
- 3. Построить булеан множества $M = \{a,b,c,d\}$.
- 4. Решить задачу с помощью диаграмм Эйлера-Венна. На первом курсе обучаются 200 студентов, среди них 55 занимаются живописью, 61 музыкой, 68 спортом, 32 живописью и музыкой, 24 музыкой и спортом, 18 живописью и спортом, 7 человек занимается всеми тремя видами деятельности. Найти: а) Сколько человек ничем не занимается? б) Сколько человек занимается только спортом? в) Сколько человек занимается музыкой и живописью, но не спортом?

Пример варианта задания контрольной работы по теме «Графы».

- 1. Постройте граф отношения «x y \leq 3» на множестве M = {1, 2, 3, 4, 5, 6, 7, 8}.
- 2. Определите свойства построенного графа.
- 3. Для построенного графа найдите:
- матрицу смежности (вершин);
- матрицу инцидентности;
- матрицу отклонений (расстояний);
- вектор отклоненностей (удаленностей);
- радиус, диаметр, центр, периферийные вершины;
- число внутренней и внешней устойчивости.
- 4. Для двух заданных графов, изображенных на рисунке, найдите декартово произведение и декартову сумму.

Пример варианта задания контрольной работы по теме «Булевы функции».

Булева функция трех переменных f(x1, x2, x3) принимает значение, равное 1, на наборах с номерами 2, 4, 5, 6.

- построить для этой функции таблицу истинности;
- определить, к каким классам функций она относится;
- найти СДНФ, СКНФ;
- найти минимальную ДНФ.

3.3 Темы для самостоятельной работы (темы рефератов)

- 1. Экстремальные элементы множеств.
- 2. Булевы функции двух переменных.
- 3. Характеристики расстояний в графах.
- 4. Гамильтоновы обходы графа.

3.4 Темы контрольной работы

- 1. Классы самодвойственных, монотонных и линейных функций. (Тема 3).
- 2. Определение путей в графах. Алгоритм Дейкстры. Обход графа (Тема 4).
- 3. Эйлеровы цепи, циклы, пути, контуры (Тема 4).

3.5 Вопросы для подготовки к экзамену

- 1. Основные определения теории множеств. Способы задания множеств.
- 2. Диаграммы Эйлера. Операции над множествами.
- 3. Разбиение множества на подмножества.
- 4. Декартово произведение множеств.
- 5. Понятие отношения на множествах. Свойства отношений.
- 6. Основные виды отношений на множествах.
- 7. Общие понятия теории графов. Способы задания графа.
- 8. Связность графа.
- 9. Изоморфизм. Плоские графы.
- 10. Маршруты: цепи, циклы, пути, контуры в графе.
- 11. Отношения на множествах и графы.
- 12. Матрицы смежности и инциденций графа.
- 13. Объединение и пересечение графов.
- 14. Декартово произведение графов.
- 15. Алгоритм Дейкстры определения кратчайших путей в графе.
- 16. Эйлеровы цепи, циклы. Теоремы Эйлера.
- 17. Гамильтоновы цепи, циклы, пути, контуры.
- 18. Понятие высказывания. Операции над высказываниями.
- 19. Понятие предиката. Логика предикатов.
- 20. Определение булевой функции. Способы задания булевой функции.
- 21. Представление булевой функции в дизъюнктивной нормальной форме.
- 22. Представление булевой функции в конъюнктивной нормальной форме.
- 23. Минимизация ДНФ. Метод Квайна.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для обеспечения процесса обучения и 18 решения залач обучения используются следующие материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе:

- Учебное пособие по дисциплине «Дискретная математика» приведено в рабочей программе в 1. разделе 12.3 [1].
- <u>Шевелев, Ю.П.</u> Основы дискретной математики : учебное пособие / Ю. П. Шевелев; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. - Томск: ТМЦДО, 2009. - 258 с. (13 экз.)
- Методические указания по самостоятельной и индивидуальной работе студентов всех форм обучения приведены в рабочей программе в разделе 12.3 [2].
- Колесникова, С.И. Дискретная математика [Электронный ресурс]: методические указания к самостоятельной работе / С. И. Колесникова; Томский государственный университет систем управления и радиоэлектроники (Томск). - Электрон. текстовые дан. - Томск: [б. и.], 2012. - on-line, 18 с. - Б. ц. [электронный ресурс]. – Режим доступа: http://edu.tusur.ru/training/publications/939
- Методические указания к практическим занятиям приведены в рабочей программе в разделе 12.3 [1].
- Колесникова, С.И. Дискретная математика [Электронный ресурс] : методические указания к практическим занятиям / С. И. Колесникова; Томский государственный университет систем управления и радиоэлектроники (Томск). - Электрон. текстовые дан. - Томск: [б. и.], 2012. - on-line, 37 с. [электронный pecypc]. – Режим доступа: http://edu.tusur.ru/training/publications/937