МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРХ	КДАЮ	
Пр	оректор по у	чебной рабо	те
		П. Е. Тро	ЯН
«	»	20	_ Γ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Квантовая и оптическая электроника

Уровень основной образовательной программы: Бакалавриат

Направление подготовки (специальность): 11.03.04 Электроника и наноэлектроника

Профиль: Квантовая и оптическая электроника

Форма обучения: очная

Факультет: **ФЭТ, Факультет электронной техники** Кафедра: **ЭП, Кафедра электронных приборов**

Курс: **4** Семестр: **7**

Учебный план набора 2013 года

Распределение рабочего времени

No	Виды учебной деятельности	7 семестр	Всего	Единицы
1	Лекции	14	14	часов
2	Практические занятия	10	10	часов
3	Лабораторные занятия	12	12	часов
4	Всего аудиторных занятий	36	36	часов
5	Из них в интерактивной форме	28	28	часов
6	Самостоятельная работа	36	36	часов
7	Всего (без экзамена)	72	72	часов
8	Подготовка и сдача экзамена	36	36	часов
9	Общая трудоемкость	108	108	часов
		3	3	3.E

Экзамен: 7 семестр

Рассмотрена	и одс	брена н	на за	аседании		
протокол №	51	от «_	<u>1_</u> »	7	201	6 г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с уче	гом требований Федерального Государственного
образовательного стандарта высшего образов	вания (ФГОС ВО) по направлению подготовки
•	ноэлектроника, утвержденного 2015-03-12 года,
	редры «» 20 года, протокол
N <u>o</u> .	
Разработчики:	
доцент каф. ЭП	Быков В. И.
доцент каф. Этт	DBINOS D. FI.
7	
Заведующий обеспечивающей каф. ЭП	Шандаров С. М.
511	шандаров С. М.
Рабоцая программа согласована с факуль	тетом, профилирующей и выпускающей кафедрами
направления подготовки (специальности).	тетом, профилирующей и выпускающей кафедрами
Декан ФЭТ	Воронин А. И.
Заведующий выпускающей каф. ЭП	Шандаров С. М.
511	шандаров С. М.
Эксперты:	
Skeneprin.	
Профессор кафедра электронных	
приборов	Орликов Л. Н.
11P1100P0B	Opinios vi. 11.

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Цель дисциплины состоит в формировании у студентов представлений о фундаментальных основах квантовой и оптической электроники, которая является важным компонентом профессионального блока подготовки бакалавров по направлению "квантовая и оптическая электроника".

1.2. Задачи дисциплины

- изучение и освоение студентами современных подходов и методов, используемых для анализа и описания явлений квантовой и оптической электроники;;
 - изучение базовых принципов квантовой и оптической электроники;;
- изучение основных принципов построения и реализации устройств квантовой и оптической электроники, рассмотрение примеров конкретных устройств, технологических подходов к их изготовлению и использованию в технологических приложениях.;

- ;

2. Место дисциплины в структуре ОПОП

Дисциплина «Квантовая и оптическая электроника» (Б1. Дисциплины (модули)) Б1. Дисциплины (модули) профессионального цикла обязательных дисциплин.

Предшествующими дисциплинами, формирующими начальные знания, являются следующие дисциплины: Квантовая механика, Математика, Методы математической физики, Нелинейная оптика, Оптические методы обработки информации, Основы проектирования электронной компонентной базы, Физика.

Последующими дисциплинами являются: Квантовые и оптоэлектронные приборы и устройства, Основы технологии электронной компонентной базы, Распространение лазерных пучков.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПК-1 способностью строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования;
- ПК-3 готовностью анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций;

В результате изучения дисциплины студент должен:

- **знать** фундаментальные принципы квантовой и оптической электроники; основные линейные и нелинейные явления квантовой и оптической электроники и методы их описания; принципы функционирования квантовых и оптоэлектронных приборов и систем
- **уметь** применять математические методы, физические законы и вычислительную технику для решения практических задач; проводить измерения, обрабатывать и представлять результаты;
- **владеть** современными подходами и методами анализа и описания линейных и нелинейных эффектов квантовой и оптической электроники.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Nº	Виды учебной деятельности	7 семестр	Всего	Единицы
1	Лекции	14	14	часов
2	Практические занятия	10	10	часов
3	Лабораторные занятия	12	12	часов

4	Всего аудиторных занятий	36	36	часов
5	Из них в интерактивной форме	28	28	часов
6	Самостоятельная работа	36	36	часов
7	Всего (без экзамена)	72	72	часов
8	Подготовка и сдача экзамена	36	36	часов
9	Общая трудоемкость	108	108	часов
		3	3	3.E

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Nº	Названия разделов дисциплины	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Всего часов (без экзамена)	Формируемые компетенции
1	Описание квантовых ансамблей	6	6	0	10	22	ПК-1, ПК-3
2	Общие вопросы построения лазеров	4	2	4	10	20	ПК-1, ПК-3
3	Элементы оптоэлектроники	4	2	8	16	30	ПК-1, ПК-3
	Итого	14	10	12	36	72	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины по лекциям	Трудоемкость, ч	Формируемые компетенции
	7 семестр		
1 Описание квантовых ансамблей	Принципы усиления света. Описание квантовых ансамблей в состоянии теплового равновесия и в процессе релаксации. Матрица плотности. Балансные уравнения.	6	ПК-1, ПК-
	Итого	6	
2 Общие вопросы построения лазеров	Элементарная теория резонаторов. Селекция мод. Расходимость пучка Когерентность, однородное и неоднородное уширение Спектральной линии. Твердотельный лазер. Режимы работы. Газовый лазер	4	ПК-1, ПК-3

	Итого	4	
3 Элементы оптоэлектроники	Планарные оптические волноводы. Классификация оптических волноводов. Эффективная толщина волновода. Полосковые волноводы.	4	ПК-1, ПК- 3
	Итого	4	
Итого за семестр		14	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представ-лены в таблице 5.3.

Таблица 5.3 - Разделы дисциплины и междисциплинарные связи

таолица 5.5 - Разделы дисциплины и междисциплинарные связи					
Nº	Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин			
		1	2	3	
	Предшествующие дисци	плины			
1	Квантовая механика	+			
2	Математика	+	+	+	
3	Методы математической физики	+			
4	4 Нелинейная оптика			+	
5	Оптические методы обработки информации		+	+	
6	6 Основы проектирования электронной компонентной базы		+	+	
7	Физика	+	+	+	
	Последующие дисципл	ІИНЫ			
1	Квантовые и оптоэлектронные приборы и устройства	+	+	+	
2	Основы технологии электронной компонентной базы			+	
3	Распространение лазерных пучков		+		

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4

Таблица 5. 4 – Соответствие компетенций и видов занятий, формируемых при изучении дисциплины

дисциплины	
	Виды занятий

Компетенции	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа
ПК-1	+	+	+	+
ПК-3	+	+	+	+

6. Интерактивные методы и формы организации обучения

Технологии интерактивного обучения при разных формах занятий в часах приведены в таблице 6.1

Таблица 6.1 – Технологии интерактивного обучения при разных формах занятий в часах

Методы	Интерактивные практические занятия	Интерактивные лабораторные занятия	Интеракт ивные лекции	Всего
Работа в команде	4	4		8
Поисковый метод	2	4	2	8
Решение ситуационных задач	2	2		4
Презентации с использованием слайдов с обсуждением			8	8
Итого	8	10	10	28

7. Лабораторный практикум

Содержание лабораторных работ приведено в таблице 7.1.

Таблица 7. 1 – Содержание дабораторных работ

таолица 7. т — Содержание лаооратор	лых расст		
Названия разделов	Содержание лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	7 семестр		
2 Общие вопросы построения лазеров	Исследование основных параметров полупроводникового лазера	4	ПК-1, ПК- 3
	Итого	4	
3 Элементы оптоэлектроники	Полупроводниковые детекторы оптического излучения	4	ПК-1, ПК- 3
	Определение электрооптических параметров анизотропных кристаллов.	4	
	Итого	8	
Итого за семестр		12	

8. Практические занятия

Содержание практических работ приведено в таблице 8.1.

Таблица 8. 1 – Содержание практических работ

Названия разделов	Содержание практических занятий	Трудоемкость,	Формируемые компетенции
	7 семестр	T	
1 Описание квантовых ансамблей	Уравнения Максвелла. Плоские световые волны в безграничных средах. Описание квантовых ансамблей и процессов релаксации. Взаимодействие электромагнитного излучения с веществом	6	ПК-1, ПК-3
	Итого	6	
2 Общие вопросы построения лазеров	Оптические резонаторы. Характеристики лазерного излучения	2	ПК-1, ПК- 3
	Итого	2	
3 Элементы оптоэлектроники	Планарные оптические волноводы	2	ПК-1, ПК-
	Итого	2	3
Итого за семестр		10	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 - Виды самостоятельной работы, трудоемкость и формируемые компетенции

аолица 3.1 - Биды самостоятсявной расоты, грудосикость и формирусмые компетенции				
Названия разделов	Виды самостоятельной работы	Трудоемкость ч	Формируемые компетенции	Формы контроля
	7 семест	p		
1 Описание квантовых ансамблей	Подготовка к практическим занятиям, семинарам	6	ПК-1, ПК-3	Конспект самоподготовки, Опрос на занятиях, Тест,
	Проработка лекционного материала	4		Экзамен, Отчет по лабораторной работе, Контрольная работа,
	Итого	10		Защита отчета
2 Общие вопросы построения лазеров	Подготовка к практическим занятиям, семинарам	2	ПК-1, ПК-3	Опрос на занятиях, Тест, Экзамен, Конспект самоподготовки, Отчет
	Проработка лекционного материала	4		по лабораторной работе, Контрольная работа, Защита отчета
	Оформление отчетов по лабораторным работам	4		ращита отчета
	Итого	10		

3 Элементы оптоэлектроники	Подготовка к практическим занятиям, семинарам	2	ПК-1, ПК-3	Опрос на занятиях, Тест, Экзамен, Конспект самоподготовки, Отчет
	Проработка лекционного материала	6		по лабораторной работе
	Оформление отчетов по лабораторным работам	4		
	Оформление отчетов по лабораторным работам	4		
	Итого	16		
Итого за семестр		36		
	Подготовка к экзамену	36		Экзамен
Итого		72		

10. Курсовая работа

Не предусмотрено РУП

11. Рейтинговая система для оценки успеваемости студентов

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Бальные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
	7	семестр		
Конспект	8	8	4	20
самоподготовки				
Контрольная работа	5	5		10
Опрос на занятиях	3	6	1	10
Отчет по лабораторной работе	10	10		20
Тест		10		10
Экзамен				30
Нарастающим итогом	26	65	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11. 2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11. 3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D ()
2 (23702 2072 02270 22 220) (22272220)	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Квантовая и оптическая электроника : учебное пособие / А. С. Шангин ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра физической электроники. Томск : ТУСУР, 2008. 112 с. : ил. Библиогр.: с. 112. (наличие в библиотеке ТУСУР 49 экз.)
- 2. Квантовая и оптическая электроника [Текст] : учебник для вузов / А. Н. Пихтин. М. : Абрис, 2012. 656 с : ил. Библиогр.: с. 652-653. ISBN 978-5-4372-0004-9 (наличие в библиотеке ТУСУР 42 экз.)
- 3. Введение в квантовую и оптическую электронику: Учебное пособие / Башкиров А. И., Шандаров С. М. 2012. 98 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/1578, свободный.

12.2. Дополнительная литература

- 1. Малышев В.А. Основы квантовой электроники и лазерной техники: Учебное пособие для вузов. М.: Высшая школа, 2005. 542 с. (наличие в библиотеке ТУСУР 39 экз.)
- 2. Верещагин И.К., Косяченко Л.А., Кокин С.М. Введение в оптоэлектронику: Учебное пособие для вузов, М.: Высшая школа, 1991. 191 с. (наличие в библиотеке ТУСУР 52 экз.)
- 3. Квантовая и оптическая электроника: Учебное пособие / Шангина Л. И. 2012. 303 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/713, свободный.

12.3. Учебно-методическое пособие и программное обеспечение

- 1. Исследование основных параметров полупроводникового лазера: Методические указания к лабораторной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И., Щербина В. В. 2014. 20 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3984, свободный.
- 2. Полупроводниковые детекторы оптического излучения: Методические указания к лабораторной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И., Щербина В. В. 2014. 17 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3985, свободный.
- 3. Определение электрооптических параметров анизотропных кристаллов: Методические указания к лабораторной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Буримов Н. И., Шандаров С. М. 2014. 18 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3986, свободный.
- 4. Квантовая и оптическая электроника: Методические указания по самостоятельной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 20 с. [Электронный ресурс] -

Режим доступа: http://edu.tusur.ru/publications/3988, свободный.

- 5. Квантовая и оптическая электроника: Методические указания к практическим занятиям для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 7 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3987, свободный.
- 6. Физические основы квантовой и оптической электроники: Методические указания к практическим занятиям / Шандаров С. М. 2013. 31 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3483, свободный.
- 7. Квантовая и оптическая электроника : Учебно-методическое пособие по практическим занятиям / Шангина Л. И. 2012. 228 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/714, свободный.

12.4. Базы данных, информационно справочные и поисковые системы

1. Научно-образовательный портал ТУСУРа

13. Материально-техническое обеспечение дисциплины

учебные лабораторные помещения; аудитории с мультимедийным оборудованием; демонстрационные материалы.

14. Фонд оценочных средств

Фонд оценочных средств приведен в приложении 1.

15. Методические рекомендации по организации изучения дисциплины Без рекомендаций.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРЖ	ҚДАЮ	
Пр	оректор по уч	ебной рабо	этс
		_ П. Е. Тро	ЯН
~	»	20_	_ [

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Квантовая и оптическая электроника

Уровень основной образовательной программы: Бакалавриат

Направление подготовки (специальность): 11.03.04 Электроника и наноэлектроника

Профиль: Квантовая и оптическая электроника

Форма обучения: очная

Факультет: **ФЭТ, Факультет электронной техники** Кафедра: **ЭП, Кафедра электронных приборов**

Курс: **4** Семестр: **7**

Учебный план набора 2013 года

Разработчики:

– доцент каф. ЭП Быков В. И.

Экзамен: 7 семестр

Томск 2016

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенций
ПК-3	готовностью анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций способностью строить простейшие	Должен знать фундаментальные принципы квантовой и оптической электроники; основные линейные и нелинейные явления квантовой и оптической электроники и методы их описания; принципы функционирования
	физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования	квантовых и оптоэлектронных приборов и систем; Должен уметь применять математические методы, физические законы и вычислительную технику для решения практических задач; проводить измерения, обрабатывать и представлять результаты;; Должен владеть современными подходами и методами анализа и описания линейных и нелинейных эффектов квантовой и оптической электроники.;

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительн о (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом наблюдении

2 Реализация компетенций

2.1 Компетенция ПК-3

ПК-3: готовностью анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Состав	Знать	Уметь	Владеть
Содержание этапов	физическую сущность процессов, протекающих при взаимодействии электромагнитного (оптического) излучения с веществом; основы теоретического анализа базовых элементов и устройств квантовой и оптической электроники, применяемых в современных информационных системах; возможности оптических методов для решения задач передачи и обработки информации.	применять практические навыки анализа процессов в системах передачи и обработки информации, использующих средства и методы квантовой и оптической электроники; пользоваться современной научнотехнической информацией и документацией по квантовой и оптической электронике; проводить лабораторные работы с лазерами, фотоприемниками и другими оптоэлектронными устройствами.	Необходимым для анализа и расчетов математическим аппаратом; компьютерными средствами для обработки информации моделирования.
Виды занятий	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные занятия; Лекции; Самостоятельная работа; Подготовка к экзамену; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные занятия; Лекции; Самостоятельная работа; Подготовка к экзамену; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Лабораторные занятия; Самостоятельная работа;
Используемые средства оценивания	 Контрольная работа; Отчет по лабораторной работе; Опрос на занятиях; Экзамен; Конспект 	 Контрольная работа; Отчет по лабораторной работе; Опрос на занятиях; Экзамен; Конспект 	Отчет по лабораторной работе;Экзамен;Экзамен;

C	самоподготовки;	самоподготовки;	
•	• Тест;	• Тест;	
•	• Экзамен;	• Экзамен;	

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	Физические основы квантовой электроники;ответы на вопросы и тесты;	• Обладает диапазоном теоретических и практических умений, требуемых для развития творческих решений;	• Стандартными средствами компьютерного моделирования;
Хорошо (базовый уровень)	• Знает факты, принципы, процессы, общие понятия в пределах смежных дисциплин;	• Умеет ориентироваться в назначении установок квантовой и оптической электроники;	• Имеет навыки работы с приборами квантовой электроники;
Удовлетворительн о (пороговый уровень)	• Знает факты, принципы, процессы, общие понятия в пределах изучаемой области;	• Умеет обрабатывать информацию из Интернета;	• Работает при прямом контроле;

2.2 Компетенция ПК-1

ПК-1: способностью строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	принципы работы излучателей и фотоприемников; методы расчета основных электрических и оптических параметров оптоэлектронных приборов; технические характеристики приборов и устройств квантовой и оптической электроники	рассчитывать электрофизические и оптические характеристики, построить математическую модель параметров материалов и устройств квантовой и оптической электроники с целью их оптимизации; проводить измерения параметров материалов и устройств квантовой и оптической электроники	опытом моделирования оптоэлектронных приборов и расчета их параметров; использования приборов квантовой и оптической электроники; программными средствами компьютерного моделирования.
Виды занятий	Интерактивные практические занятия;Интерактивные лабораторные занятия;	Интерактивные практические занятия;Интерактивные лабораторные занятия;	Интерактивные практические занятия;Интерактивные лабораторные занятия;

	 Интерактивные лекции; Практические занятия; Лабораторные занятия; Лекции; Самостоятельная работа; Подготовка к экзамену; 	 Интерактивные лекции; Практические занятия; Лабораторные занятия; Лекции; Самостоятельная работа; Подготовка к экзамену; 	 Лабораторные занятия; Самостоятельная работа;
Используемые средства оценивания	 Контрольная работа; Отчет по лабораторной работе; Опрос на занятиях; Экзамен; Конспект самоподготовки; Тест; Экзамен; 	 Контрольная работа; Отчет по лабораторной работе; Опрос на занятиях; Экзамен; Конспект самоподготовки; Тест; Экзамен; 	Отчет по лабораторной работе;Экзамен;Экзамен;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	• методы расчета и технические характеристики приборов квантовой и оптической электроники; • Стандартные программные средства для компьютерного моделирования;	• Производить анализ работы устройств и приборов квантовой и оптической электроники;	• Владеет стандартными программными средствами компьютерного моделирования;
Хорошо (базовый уровень)	• Стандартные программные средства для компьютерного моделирования;	• проводить необходимые измерения параметров устройств квантовой и оптической электроники;	• навыками работы с приборами квантовой и оптической электроники;
Удовлетворительн о (пороговый уровень)	• назначение и характеристики приборов квантовой и оптической электроники;	• иметь общее представление о способах расчета параметров приборов.;	• методами копирования информации; методом поиска в интернете;

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

3.1 Вопросы на самоподготовку

- Укажите диапазоны длин волн ультрафиолетового, видимого и инфракрас- ного излучения. Назовите основные оптического световые характеристики оптического излучения. Охарактеризуйте основные типы переходов между энергетическими уров- нями в квантовой системе и назовите виды вынужденных переходов. Напишите условие инверсионной населенности и проведите классификацию методов энергетической накачки активных среде. Объясните работу оптического резонатора и напишите условие самовозбу- ждения лазера. Приведите структурную схему лазера, объясните назначение элементов и приведите основные оптические и электрические параметры лазеров. Объясните принцип работы твердотельного рубинового лазера, укажите его основные параметры. Приведите энергетическую диаграмму газового Не-Ne лазера и объясните принцип его работы. Объясните принцип работы молекулярного СО2 - лазера и ионного лазеров, назовите их основные параметры и области использования.
- Принцип усиления ЭМИ Уравнения Максвелла в дифференциальной форме.
 Материальные уравнения Одномерное волновое уравнение. Плоские скалярные волны.
 Гармонические волны Плоская волна, распространяющаяся в произвольном направлении ЭМ плоские волны Поляризация плоских волн Закон сохранения энергии. Вектор Пойнтинга Волновой пакет. Групповая скорость

3.2 Тестовые задания

- В состоянии, близком к ТДР, разность населённостей уровней $\Delta n=n1-n2$ при росте интенсивности падающего излучения с частотой v21: А. не изменяется Б. возрастает В. снижается
- В ансамбле частиц с двумя уровнями энергии (первоначально находящимся в состоянии термодинамического равновесия), при оптической накачке инверсию населённостей: А. можно создать при малых плотностях энергии накачки ρ Б. можно создать при любых ρ Γ . создать невозможно в принципе

3.3 Темы опросов на занятиях

- Планарные оптические волноводы. Классификация оптических волноводов.
 Эффективная толщина волновода. Полосковые волноводы.
- Элементарная теория резонаторов. Селекция мод. Расходимость пучка Когерентность, однородное и неоднородное уширение Спектральной линии. Твердотельный лазер. Режимы работы. Газовый лазер
- Принципы усиления света. Описание квантовых ансамблей в состоянии теплового равновесия и в процессе релаксации. Матрица плотности. Балансные уравнения.

3.4 Темы контрольных работ

— Для термостатированного ансамбля, находящегося в состоянии релаксации, запишите уравнение, описывающее эволюцию недиагонального элемента $\square 12(t)$ и найдите его общее решение.

3.5 Экзаменационные вопросы

— 1. Принцип усиления ЭМИ 2. Представления функции состояния. Вектор состояния. Совектор состояния. 3. Схемы функционирования твердотельных лазеров. 1. Лазер с синхронизацией мод генерирует периодическую последовательность импульсов с длительностью 10-10с и частотой повторения 100 МГц и имеет среднюю мощность 100 мВт. Определите мощность излучения и энергию в импульсе. 2. Вывести систему уравнений баланса, соответствующую термостатированному ансамблю частиц с тремя энергетическими уровнями. Принять, что поле накачки индуцирует переходы между уровнями 1 и 3 с вероятностью W13 для одной частицы в единицу времени; учесть спонтанные переходы. 3. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси z, имеет равные по амплитуде и сдвинутые по фазе на −π/2 проекции вектора электрической напряженности на оси x и y. Определите вид поляризации данной волны.

3.6 Темы лабораторных работ

- Определение электрооптических параметров анизотропных кристаллов.

- Полупроводниковые детекторы оптического излучения
- Исследование основных параметров полупроводникового лазера

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

– методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы фор-мирования компетенций, согласно п. 12 рабочей программы.

4.1. Основная литература

- 1. Квантовая и оптическая электроника : учебное пособие / А. С. Шангин ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра физической электроники. Томск : ТУСУР, 2008. 112 с. : ил. Библиогр.: с. 112. (наличие в библиотеке ТУСУР 49 экз.)
- 2. Квантовая и оптическая электроника [Текст] : учебник для вузов / А. Н. Пихтин. М. : Абрис, 2012. 656 с : ил. Библиогр.: с. 652-653. ISBN 978-5-4372-0004-9 (наличие в библиотеке ТУСУР 42 экз.)
- 3. Введение в квантовую и оптическую электронику: Учебное пособие / Башкиров А. И., Шандаров С. М. 2012. 98 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/1578, свободный.

4.2. Дополнительная литература

- 1. Малышев В.А. Основы квантовой электроники и лазерной техники: Учебное пособие для вузов. М.: Высшая школа, 2005. 542 с. (наличие в библиотеке ТУСУР 39 экз.)
- 2. Верещагин И.К., Косяченко Л.А., Кокин С.М. Введение в оптоэлектронику: Учебное пособие для вузов, М.: Высшая школа, 1991. 191 с. (наличие в библиотеке ТУСУР 52 экз.)
- 3. Квантовая и оптическая электроника: Учебное пособие / Шангина Л. И. 2012. 303 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/713, свободный.

4.3. Учебно-методическое пособие и программное обеспечение

- 1. Исследование основных параметров полупроводникового лазера: Методические указания к лабораторной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И., Щербина В. В. 2014. 20 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3984, свободный.
- 2. Полупроводниковые детекторы оптического излучения: Методические указания к лабораторной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И., Щербина В. В. 2014. 17 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3985, свободный.
- 3. Определение электрооптических параметров анизотропных кристаллов: Методические указания к лабораторной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Буримов Н. И., Шандаров С. М. 2014. 18 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3986, свободный.
- 4. Квантовая и оптическая электроника: Методические указания по самостоятельной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 20 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3988, свободный.
- 5. Квантовая и оптическая электроника: Методические указания к практическим занятиям для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 7 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3987, свободный.
- 6. Физические основы квантовой и оптической электроники: Методические указания к практическим занятиям / Шандаров С. М. 2013. 31 с. [Электронный ресурс] Режим доступа: http://edu.tusur.ru/publications/3483, свободный.

7. Квантовая и оптическая электроника : Учебно-методическое пособие по практическим занятиям / Шангина Л. И. - 2012. 228 с. [Электронный ресурс] - Режим доступа: http://edu.tusur.ru/publications/714, свободный.

4.4. Базы данных, информационно справочные и поисковые системы

1. Научно-образовательный портал ТУСУРа