МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ								
Пр	оректо	ор по уч	ебной раб	оте				
			_ П. Е. Тро	нк				
‹ ‹	>>		20	Γ				

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Проектирование и технология электронной компонентной базы

Уровень образования: высшее образование - магистратура

Направление подготовки (специальность): 11.04.04 Электроника и наноэлектроника

Направленность (профиль): Квантовая и оптическая электроника

Форма обучения: очная

Факультет: **ФЭТ, Факультет электронной техники** Кафедра: **ЭП, Кафедра электронных приборов**

Курс: **2** Семестр: **3**

Учебный план набора 2015 года

Распределение рабочего времени

No	Виды учебной деятельности	3 семестр	Всего	Единицы
1	Лекции	18	18	часов
2	Практические занятия	10	10	часов
3	Лабораторные работы	16	16	часов
4	Всего аудиторных занятий	44	44	часов
5	Из них в интерактивной форме	20	20	часов
6	Самостоятельная работа	64	64	часов
7	Всего (без экзамена)	108	108	часов
8	Подготовка и сдача экзамена	36	36	часов
9	Общая трудоемкость	144	144	часов
		4.0	4.0	3.E

Экзамен: 3 семестр

Томск 2017

Рассмотрена	и одо	брена на	зас	седании	кафедры
протокол №	58	от «_8	>>	2	2017 г.

ЛИСТ СОГЛАСОВАНИЙ

вательного стандарта высшего образования (Ф	и требований федерального государственного образо- РГОС ВО) по направлению подготовки (специально- утвержденного 30 октября 2014 года, рассмотрена и 20 года, протокол №
Разработчик:	
доцент каф. ЭП	Н. И. Буримов
Заведующий обеспечивающей каф. ЭП	С. М. Шандаров
Рабочая программа согласована с факул направления подготовки (специальности).	втетом, профилирующей и выпускающей кафедрами
Декан ФЭТ	А. И. Воронин
Заведующий выпускающей каф. ЭП	С. М. Шандаров
Эксперт:	
Профессор ТУСУР, каф.ЭП	Л. Н. Орликов

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Обучение студентов общим принципам и подходам проектирования активных и пассивных микроэлектронных компонентов и устройств, в том числе СВЧ диапазона, с использованием современных пакетов 2D и 3D-прикладных программ, обеспечивающих приборно-технологическое проектирование компонентов нового поколения, а также интеграцию этих средств с САПР СБИС.

1.2. Задачи дисциплины

 Изучение и освоение типовых базовых технологических процессов производства микроэлектронных компонентов и устройств с использованием современных программных продуктов и методов моделирования.

2. Место дисциплины в структуре ОПОП

Дисциплина «Проектирование и технология электронной компонентной базы» (Б1.Б.5) относится к блоку 1 (базовая часть).

Предшествующими дисциплинами, формирующими начальные знания, являются следующие дисциплины: Актуальные проблемы современной электроники и наноэлектроники, Интегральная оптоэлектроника, Компьютерные технологии в научных исследованиях, Специальные вопросы технологии приборов квантовой и оптической электроники.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПК-3 готовностью осваивать принципы планирования и методы автоматизации эксперимента на основе информационно-измерительных комплексов как средства повышения точности и снижения затрат на его проведение, овладевать навыками измерений в реальном времени;
- ПК-12 способностью разрабатывать технологическую документацию на проектируемые устройства, приборы и системы электронной техники;
- ПК-13 готовностью обеспечивать технологичность изделий электронной техники и процессов их изготовления, оценивать экономическую эффективность технологических процессов;

В результате изучения дисциплины студент должен:

- **знать** методы расчета, проектирования, конструирования и модернизации электронной компонентной базы с использованием систем автоматизированного проектирования и компьютерных средств
- **уметь** разрабатывать физические и математические модели приборов и устройств электроники и наноэлектроники; разрабатывать технологические маршруты их изготовления, применять новейшие технологические и конструкционные материалы
- **владеть** методами проектирования электронной компонентной базы и технологических процессов электроники и наноэлектроники; методами математического моделирования технологических процессов с целью их оптимизации

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		3 семестр
Аудиторные занятия (всего)	44	44
Лекции	18	18
Практические занятия	10	10
Лабораторные работы	16	16
Из них в интерактивной форме	20	20
Самостоятельная работа (всего)	64	64

Оформление отчетов по лабораторным работам	20	20
Проработка лекционного материала	24	24
Подготовка к практическим занятиям, семинарам	20	20
Всего (без экзамена)	108	108
Подготовка и сдача экзамена	36	36
Общая трудоемкость ч	144	144
Зачетные Единицы	4.0	4.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Всего часов (без экзамена)	Формируемые компетенции
	3 cen	местр				
1 Изучение современных возможностей по проектированию и моделированию приборов и интегральных схем, изготовлению фотошаблонов, проектированию и изготовлению печатных плат	4	0	0	4	8	ПК-12, ПК-3
2 Моделирование и расчет характеристик активных и пассивных микроэлектронных компонентов и устройств в среде Sentaurus TCAD: трехмерное моделирование полупроводниковых субмикронных приборов, включающее моделирование технологического процесса формирования структуры прибора, механических напряжений внутри прибора и анализ трехмерного растекания носителей заряда; моделирование кремниевых приборов и приборов с гетеропереходами (в том числе на основе SiC и GaN), приборов на основе материалов АЗВ5, использующих гетеропереходы (НЕМТ), фотодетекторов, светоизлучающих диодов (LED) и полупроводниковых лазеров.	5	5	8	24	42	ПК-12, ПК-13, ПК-3
3 Изучение базовых технологий изготовления активных и пассивных микроэлектронных компонентов и устройств, в том числе сверхвысокочативной в пример пробествувного применент в	5	5	8	28	46	ПК-12, ПК- 13, ПК-3

стотных полосковых схем, адаптированных к новой электронной компонентной базе сверхвысокочастотного диапазона; освоение технологии новых материалов и покрытий, обеспечивающих повышение надежности компонентов и интегральных схем на их основе.						
4 Одно- и двухмерное моделирование технологических процессов в среде Sentaurus TCAD в процессе проектирования активных и пассивных микроэлектронных компонентов и устройств: термическое окисление кремния; диффузия в кремнии при высокой и низкой концентрации примеси; ионная имплантация; пучковый отжиг имплантированного кремния; оптическая литография; литография в глубокой УФ области.	4	0	0	8	12	ПК-12, ПК- 13, ПК-3
Итого за семестр	18	10	16	64	108	
Итого	18	10	16	64	108	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины по лекциям	Трудоемкость, ч	Формируемые компетенции
	3 семестр		
1 Изучение современных возможностей по проектированию и моделированию приборов и интегральных схем, изготовлению фотошаблонов, проектированию и изготовлению печатных плат	Поверхностные (ПАВ) и объемные (ОАВ) акустические волны Возбуждение акустических волн в кристаллах. Коэффициенты электромеханической связи. Дифракция и затухание акустических волн в пьезокристаллах. Встречно-штыревой преобразователь как трансверсальный фильтр. Эквивалентные схемы. Методы расчета ВШП. Широкополосные пьезопреобразователи. Щелевой и торцевой пьезопреобразователи.	4	ПК-12, ПК-3
	Итого	4	
2 Моделирование и расчет характеристик активных и пассивных микроэлектронных компонентов и устройств в среде Sentaurus TCAD: трехмерное моделирование полупроводниковых	Линии задержки (ЛЗ) на ПАВ. Вносимые потери и ложные сигналы. Полоса пропускания ЛЗ. Температурная стабильность. Динамический диапазон. Резонаторы. Генераторы на ПАВ. Стабильность генераторов. Полосовые	5	ПК-12, ПК-13, ПК-3

субмикронных приборов, включающее моделирование технологического процесса формирования структуры прибора, механических напряжений внутри прибора и анализ трехмерного растекания носителей заряда; моделирование кремниевых приборов и приборов с гетеропереходами (в том числе на основе SiC и GaN), приборов на основе материалов A3B5, использующих гетеропереходы (HEMT), фотодетекторов, светоизлучающих диодов (LED) и полупроводниковых лазеров.	фильтры. Фильтры линейно-частотномодулированных (ЛЧМ) сигналов. Акустоэлектронные частотомеры. Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодо-манипулированных сигналов. Нелинейная обработка сигналов. Пьезоэлектрические конвольверы. Многополосковые ответвители. Мультиплексоры на ПАВ.	5	
3 Изучение базовых технологий изготовления активных и пассивных микроэлектронных компонентов и устройств, в том числе сверхвысокочастотных	Методы обработки подложек и звуко- проводов. Методы экспонирования ри- сунков на полимерные пленки. Опти- ческая проекционная печать. Элек- тронная проекционная литография.	5	ПК-12, ПК-13, ПК-3
полосковых схем, адаптированных к новой электронной компонентной базе сверхвысокочастотного диапазона; освоение технологии новых материалов и покрытий, обеспечивающих повышение надежности компонентов и интегральных схем на их основе.	Итого	5	
4 Одно- и двухмерное моделирование технологических процессов в среде Sentaurus TCAD в процессе проектирования активных и пассивных	Рентгеновская литография. Химическое травление. Плазменное травление. Легирование. Травление ионной бомбардировкой. Метод съемного шаблона.	4	ПК-12, ПК-13, ПК-3
микроэлектронных компонентов и устройств: термическое окисление кремния; диффузия в кремнии при высокой и низкой концентрации примеси; ионная имплантация; пучковый отжиг имплантированного кремния; оптическая литография; литография в глубокой УФ области.	Итого	4	
Итого за семестр		18	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 - Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых	
	необходимо изучение обеспечивающих и	
	обеспечиваемых дисциплин	

	1	2	3	4		
Предшествующие дисциплины						
1 Актуальные проблемы современной электроники и наноэлектроники	+		+			
2 Интегральная оптоэлектроника		+				
3 Компьютерные технологии в научных исследованиях		+		+		
4 Специальные вопросы технологии приборов квантовой и оптической электроники	+	+	+			

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4

Таблица 5.4 – Соответствие компетенций и видов занятий, формируемых при изучении дисциплины

		Виды з			
Компетенции	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы контроля
ПК-3	+	+	+	+	Экзамен, Отчет по лабораторной работе, Опрос на занятиях, Реферат
ПК-12	+	+	+	+	Экзамен, Отчет по лабораторной работе, Опрос на занятиях, Реферат
ПК-13	+	+	+	+	Экзамен, Отчет по лабораторной работе, Опрос на занятиях, Реферат

6. Интерактивные методы и формы организации обучения

Технологии интерактивного обучения при разных формах занятий в часах приведены в таблице 6.1

Таблица 6.1 – Технологии интерактивного обучения при разных формах занятий в часах

Методы	Интерактивные практические занятия	Интерактивные лабораторные занятия	Интеракт ивные лекции	Всего
	3 семе	естр		
Работа в команде	6	6		12
Презентации с использованием слайдов с обсуждением			8	8
Итого за семестр:	6	6	8	20
Итого	6	6	8	20

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7. 1 – Наименование лабораторных работ

Названия разделов	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	3 семестр		
2 Моделирование и расчет характеристик активных и пассивных микроэлектронных компонентов и устройств в среде Sentaurus TCAD: трехмерное моделирование полупроводниковых субмикронных приборов, включающее моделирование технологического процесса формирования структуры прибора, механических напряжений внутри прибора и анализ трехмерного растекания носителей заряда; моделирование кремниевых приборов и приборов с гетеропереходами (в том числе на основе SiC и GaN), приборов на основе материалов A3B5, использующих гетеропереходы (HEMT), фотодетекторов, светоизлучающих диодов (LED) и полупроводниковых лазеров.	Исследование линий задержки на ПАВ Исследование полосового фильтра на ПАВ	4	ПК-12, ПК-3
	Итого	8	
3 Изучение базовых технологий изготовления активных и пассивных микроэлектронных	Исследование акустооптического модулятора	4	ПК-12, ПК-13, ПК-3
компонентов и устройств, в том	Исследование планарного акустооптического модулятора	4	11113
числе сверхвысокочастотных полосковых схем, адаптированных к новой электронной компонентной базе сверхвысокочастотного диапазона; освоение технологии новых материалов и покрытий, обеспечивающих повышение надежности компонентов и интегральных схем на их основе.	Итого	8	
Итого за семестр		16	

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8. 1 – Наименование практических занятий (семинаров)

таолица о. т – таимспование практи	теских запитии (семинаров)		
Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	3 семестр		
2 Моделирование и расчет характеристик активных и пассивных микроэлектронных компонентов и устройств в среде Sentaurus TCAD: трехмерное моделирование полупроводниковых субмикронных приборов, включающее моделирование технологического процесса формирования структуры прибора, механических напряжений внутри прибора и анализ трехмерного растекания носителей заряда; моделирование кремниевых приборов и приборов с гетеропереходами (в том числе на	Линии задержки (ЛЗ) на ПАВ. Вносимые потери и ложные сигналы. Полоса пропускания ЛЗ. Температурная стабильность. Динамический диапазон. Резонаторы. Генераторы на ПАВ. Стабильность генераторов. Полосовые фильтры. Фильтры линейно-частотномодулированных (ЛЧМ) сигналов. Акустоэлектронные частотомеры. Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодо-манипулированных сигналов. Нелинейная обработка сигналов. Пьезоэлектрические конвольверы. Многополосковые ответвители. Мультиплексоры на ПАВ.	5	ПК-12, ПК-13, ПК-3
основе SiC и GaN), приборов на основе материалов A3B5, использующих гетеропереходы (HEMT), фотодетекторов, светоизлучающих диодов (LED) и полупроводниковых лазеров.	Итого	5	
3 Изучение базовых технологий изготовления активных и пассивных микроэлектронных компонентов и устройств, в том числе сверхвысокочастотных полосковых схем, адаптированных к новой электронной компонентной базе сверхвысокочастотного диапазона; освоение технологии новых материалов и покрытий, обеспечивающих повышение	Методы обработки подложек и звуко- проводов. Методы экспонирования ри- сунков на полимерные пленки. Опти- ческая проекционная печать. Элек- тронная проекционная литография. Рентгеновская литография. Химиче- ское травление. Плазменное травление. Легирование. Травление ионной бом- бардировкой. Метод съемного шабло- на.	5	ПК-12, ПК-13, ПК-3
надежности компонентов и интегральных схем на их основе.	Итого	5	
Итого за семестр		10	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 - Виды самостоятельной работы, трудоемкость и формируемые компетенции

Таолица 9.1 - Виды самост	гоятельной работы, трудоем	ікость и	формируем	ные компетенции
Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	3 семест	p	1	
1 Изучение современных возможностей по	* *	4	ПК-12, ПК-3	Реферат
проектированию и моделированию приборов и интегральных схем, изготовлению фотошаблонов, проектированию и изготовлению печатных плат	Итого	4	IIK-3	
2 Моделирование и расчет характеристик активных и пассивных	Подготовка к практическим занятиям, семинарам	8	ПК-12, ПК-13, ПК-3	Опрос на занятиях, Отчет по лабораторной работе, Реферат
микроэлектронных компонентов и	Проработка лекционного материала	4		
устройств в среде Sentaurus TCAD: трехмерное	Оформление отчетов по лабораторным работам	12		
моделирование полупроводниковых субмикронных приборов, включающее моделирование технологического процесса формирования структуры прибора, механических напряжений внутри прибора и анализ трехмерного растекания носителей заряда; моделирование кремниевых приборов и приборов с гетеропереходами (в том числе на основе SiC и GaN), приборов на основе материалов АЗВ5, использующих гетеропереходы (НЕМТ), фотодетекторов, светоизлучающих диодов (LED) и полупроводниковых	Итого	24		

лазеров.				
3 Изучение базовых технологий изготовления активных и	Подготовка к практиче- ским занятиям, семина- рам	12	ПК-12, ПК-13, ПК-3	Опрос на занятиях, Отчет по лабораторной работе, Реферат
пассивных микроэлектронных	Проработка лекционного материала	8		
компонентов и устройств, в том числе сверхвысокочастотных	Оформление отчетов по лабораторным работам	8		
полосковых схем, адаптированных к новой электронной компонентной базе сверхвысокочастотного диапазона; освоение технологии новых материалов и покрытий, обеспечивающих повышение надежности компонентов и интегральных схем на их основе.	Итого	28		
4 Одно- и двухмерное моделирование	Проработка лекционного материала	8	ПК-12, ПК-13,	Реферат
технологических процессов в среде Sentaurus TCAD в процессе проектирования активных и пассивных микроэлектронных компонентов и устройств: термическое окисление кремния; диффузия в кремнии при высокой и низкой концентрации примеси; ионная имплантация; пучковый отжиг имплантированного кремния; оптическая литография; литография в глубокой УФ области.	Итого	8	ПК-3	
Итого за семестр		64		
	Подготовка и сдача экза- мена	36		Экзамен
Итого		100		

9.1. Вопросы для подготовки к практическим занятиям, семинарам

- 1. Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодоманипулированных сигналов.
 - 2. Нелинейная обработка сигналов. Пьезоэлектрические конвольверы.
 - 3. Многополосковые ответвители. Мультиплексоры на ПАВ.

- 4. Методы обработки подложек и звукопроводов.
- 5. Методы экспонирования рисунков на полимерные пленки.
- 6. Оптическая проекционная печать.
- 7. Электронная проекционная литография.

9.2. Вопросы на проработку лекционного материала

- 1. Линии задержки (ЛЗ) на ПАВ.
- 2. Вносимые потери и ложные сигналы.
- 3. Полоса пропускания ЛЗ. Температурная стабильность. Динамический диапазон.
- 4. Резонаторы.
- 5. Генераторы на ПАВ. Стабильность генераторов.
- 6. Полосовые фильтры.
- 7. Фильтры линейно-частотно-модулированных (ЛЧМ) сигналов.
- 8. Акустоэлектронные частотомеры.
- 9. Акустооптические модуляторы.
- 10. Акустооптические частотомеры.
- 11. Акустооптические анализаторы спектра.
- 12. Акустооптические устройства обработки сложных сигналов.
- 13. Согласованные фильтры.
- 14. Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодоманипулированных сигналов.
 - 15. Нелинейная обработка сигналов. Пьезоэлектрические конвольверы.
 - 16. Многополосковые ответвители. Мультиплексоры на ПАВ.
 - 17. Рентгеновская литография.
 - 18. Химическое травление.
 - 19. Плазменное травление.
 - 20. Легирование.
 - 21. Травление ионной бомбардировкой.
 - 22. Метод съемного шаблона.

9.3. Темы лабораторных работ

- 1. Исследование линий задержки на ПАВ
- 2. Исследование полосового фильтра на ПАВ
- 3. Исследование акустооптического модулятора.
- 4. Исследование планарного акустооптического модулятора

10. Курсовая работа (проект)

Не предусмотрено РУП

11. Рейтинговая система для оценки успеваемости студентов

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
	3	семестр		
Опрос на занятиях	5	5	10	20
Отчет по лабораторной работе	10	10	10	30
Реферат	5	5	10	20
Итого максимум за период	20	20	30	70

Экзамен				30
Нарастающим итогом	20	40	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11. 2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11. 3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (уугар датраруугану ууа)
2 (2.20.2.20.2.20.2.20.2.20.2.20.2.20.2.	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Акустоэлектронные приборы и устройства: Учебное пособие / Серебренников Л. Я., Шандаров С. М., Буримов Н. И. - 2012. 70 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/2851, дата обращения: 02.06.2017.

12.2. Дополнительная литература

1. Оптические и акустооптические системы обработки информации: Учебное пособие / Башкиров А. И. - 2012. 100 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/1819, дата обращения: 02.06.2017.

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Исследование линий задержки на ПАВ: Методические указания к лабораторной работе / Буримов Н. И., Шандаров С. М. 2013. 15 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2856, дата обращения: 02.06.2017.
- 2. Акустоэлектронные приборы и устройства: Методические указания по самостоятельной работе / Серебренников Л. Я., Буримов Н. И., Шандаров С. М. 2012. 12 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2853, дата обращения: 02.06.2017.
- 3. Исследование полосового фильтра на ПАВ: Методические указания к лабораторной работе / Буримов Н. И., Шандаров С. М. 2013. 14 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2857, дата обращения: 02.06.2017.

- 4. Исследование акустооптического модулятора: Методические указания к лабораторной работе / Буримов Н. И., Шандаров С. М. 2013. 12 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2858, дата обращения: 02.06.2017.
- 5. Интегральная оптоэлектроника: Методические указания к лабораторной работе / Башкиров А. И., Буримов Н. И., Литвинов Р. В., Саликаев Ю. Р. 2013. 39 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2971, дата обращения: 02.06.2017.
- 6. Квантовые и оптоэлектронные приборы и устройства: Методические указания к практическим занятиям / Мягков А. С. 2012. 53 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2495, дата обращения: 02.06.2017.

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

1. Scopus, Web of Science

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, имеющая 30 посадочных мест, оборудованная доской и стандартной учебной мебелью (ауд. 237 корпус ФЭТ). Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для практических занятий

Для проведения практических (семинарских) занятий используется учебная аудитория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 47, 5 этаж, ауд. 511. Состав оборудования: Учебная мебель; Доска магнитно-маркерная -1шт.; Коммутатор D-Link Switch 24 port - 1шт.; Компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. -9 шт. Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3/Microsoft Windows 7 Professional with SP1. Имеется помещения для хранения и профилактического обслуживания учебного оборудования.

13.1.3. Материально-техническое обеспечение для лабораторных работ

Для проведения лабораторных занятий используется учебно-исследовательские лаборатории, расположенные по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 1 этаж, ауд. 111, 101, 008. Состав оборудования: учебная мебель, лабораторные стенды, необходимый парк измерительных приборов, компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet.

13.1.4. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 47, 5 этаж, ауд. 511. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 9 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационно-

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Фонд оценочных средств

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Таблица 14 – Дополнительные средства оценивания для студентов с инвалидностью

таолица 14 до	полнительные средства оценивания	дли студентов с инвалидноствю
Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;

- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	У	TBEP	ЖДАЮ	
Пр	орект	ор по у	учебной рабо ^л	те
			П. Е. Троя	łΗ
«	<u></u> »		20	Г

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Проектирование и технология электронной компонентной базы

Уровень образования: высшее образование - магистратура

Направление подготовки (специальность): 11.04.04 Электроника и наноэлектроника

Направленность (профиль): Квантовая и оптическая электроника

Форма обучения: очная

Факультет: **ФЭТ, Факультет электронной техники** Кафедра: **ЭП, Кафедра электронных приборов**

Курс: **2** Семестр: **3**

Учебный план набора 2015 года

Разработчик:

- доцент каф. ЭП Н. И. Буримов

Экзамен: 3 семестр

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенций
ПК-3	готовностью осваивать принципы планирования и методы автоматизации эксперимента на основе информационно-измерительных комплексов как средства повышения точности и снижения затрат на его проведение, овладевать навыками измерений в реальном времени	Должен знать методы расчета, проектирования, конструирования и модернизации электронной компонентной базы с использованием систем автоматизированного проектирования и компьютерных средств; Должен уметь разрабатывать физиче-
ПК-12	способностью разрабатывать технологическую документацию на проектируемые устройства, приборы и системы электронной техники	ские и математические модели приборов и устройств электроники и наноэлектроники; разрабатывать технологические маршруты их изготовления, применять новейшие технологические и конструк-
ПК-13	готовностью обеспечивать технологичность изделий электронной техники и процессов их изготовления, оценивать экономическую эффективность технологических процессов	новеишие технологические и конструкционные материалы; Должен владеть методами проектирования электронной компонентной базы и технологических процессов электроники и наноэлектроники; методами математического моделирования технологических процессов с целью их оптимизации;

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совер- шенствует действия ра- боты
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в ис- следовании, приспосаб- ливает свое поведение к обстоятельствам в реше- нии проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом на- блюдении

2 Реализация компетенций

2.1 Компетенция ПК-3

ПК-3: готовностью осваивать принципы планирования и методы автоматизации эксперимента на основе информационно-измерительных комплексов как средства повышения точности и снижения затрат на его проведение, овладевать навыками измерений в реальном времени.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Таблица 3 – Этапы формирования компетенции и используемые средства оценивания

Состав	формирования компетенци Знать	Уметь	Владеть
Содержание этапов	Принципы планирования и методы автоматизации экспериментальных исследований электронных приборов, устройств и их компонентов на основе информационно-измерительных комплексов как средства повышения точности и снижения затрат на его проведение, овладевать навыками измерений в реальном времени	Применять экспериментальные методы для решения типовых задач профессиональной области с доведением решения до практически приемлемого результата; проводить необходимые расчеты	Современными методами исследования с целью математического и имитационного моделирования процессов и объектов электроники и наноэлектроники на базе стандартных пакетов автоматизированного проектирования
Виды занятий	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные работы; Лекции; Самостоятельная работа; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные работы; Лекции; Самостоятельная работа; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Лабораторные работы; Самостоятельная работа;
Используемые средства оценивания	Отчет по лабораторной работе;Опрос на занятиях;Реферат;Экзамен;	Отчет по лабораторной работе;Опрос на занятиях;Реферат;Экзамен;	Отчет по лабораторной работе;Реферат;Экзамен;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично	• Принципы планиро-	• Применять экспери-	• Современными мето-
(высокий уровень)	вания и методы автома-	ментальные методы для	дами исследования с
	тизации эксперимен-	решения типовых задач	целью математического
	тальных исследований	профессиональной об-	и имитационного моде-
	электронных приборов,	ласти с доведением ре-	лирования процессов и

	устройств и их компонентов на основе информационно-измерительных комплексов как средства повышения точности и снижения затрат на его проведение, овладевать навыками измерений в реальном времени;	шения до практически приемлемого результата; проводить необходимые расчеты.;	объектов электроники и наноэлектроники на базе стандартных паке- тов автоматизированно- го проектирования;
Хорошо (базовый уровень)	• Основные принципы планирования и методы автоматизации экспериментальных исследований электронных приборов, устройств и их компонентов.;	• Применять экспериментальные методы для решения типовых задач профессиональной области с доведением решения до практически приемлемого результата.;	• Современными методами исследования с целью математического и имитационного моделирования процессов и объектов электроники и наноэлектроники.;
Удовлетворительн о (пороговый уровень)	• Основные принципы планирования экспериментальных исследований электронных приборов, устройств и их компонентов.;	• Применять экспериментальные методы для решения типовых задач профессиональной области.;	• Методами исследования с целью математического моделирования процессов и объектов электроники и наноэлектроники.;

2.2 Компетенция ПК-12

ПК-12: способностью разрабатывать технологическую документацию на проектируемые устройства, приборы и системы электронной техники.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Современные методы разработки технологической документации на проектируемые устройства, приборы и системы электронной техники, включая пакеты прикладных программ.	Применять современные методы разработки и пакеты прикладных программ для создания технологической документации на проектируемые устройства, приборы и системы электронной техники.	современными методами и алгоритмами разра- ботки технологической документации на проектируемые устройства, приборы и системы электронной техники.
Виды занятий	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные работы; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные работы; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Лабораторные работы; Самостоятельная работа;

	Лекции;Самостоятельная работа;	Лекции;Самостоятельная работа;	
Используемые средства оценивания	Отчет по лабораторной работе;Опрос на занятиях;Реферат;Экзамен;	Отчет по лабораторной работе;Опрос на занятиях;Реферат;Экзамен;	Отчет по лабораторной работе;Реферат;Экзамен;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	• Современные методы разработки технологической документации на проектируемые устройства, приборы и системы электронной техники, включая пакеты прикладных программ.;	• Применять современные методы разработки и пакеты прикладных программ для создания технологической документации на проектируемые устройства, приборы и системы электронной техники.;	• Современными методами и алгоритмами разработки технологической документации на проектируемые устройства, приборы и системы электронной техники.;
Хорошо (базовый уровень)	• Современные методы разработки технологической документации на проектируемые устройства, приборы и системы электронной техники;	• Применять современные методы разработки для создания технологической документации на проектируемые устройства, приборы и системы электронной техники.;	• Современными методами разработки технологической документации на проектируемые устройства, приборы и системы электронной техники.;
Удовлетворительн о (пороговый уровень)	• Основные методы разработки технологической документации на проектируемые устройства, приборы и системы электронной техники;	• Разрабатывать техно- логическую документа- цию на проектируемые устройства, приборы и системы электронной техники.;	• Методами разработки технологической документации на проектируемые устройства, приборы и системы электронной техники;

2.3 Компетенция ПК-13

ПК-13: готовностью обеспечивать технологичность изделий электронной техники и процессов их изготовления, оценивать экономическую эффективность технологических процессов.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 7.

Таблица 7 – Этапы формирования компетенции и используемые средства оценивания

,	 	<u> </u>	<u> </u>
Состав	Знать	Уметь	Владеть
Содержание эта-	Критерии, обеспечиваю-	Обеспечивать техноло-	Навыками оценки эконо-
ПОВ	щие технологичность из-	гичность изделий элек-	мической эффективности
	делий электронной тех-	тронной техники и про-	технологических процес-
	ники и процессов их	цессов их изготовления,	сов производства изде-
	изготовления, методы	оценивать экономиче-	лий электронной техни-
	оценки экономической	скую эффективность тех-	ки и обеспечения техно-

	эффективности технологических процессов; методы оптимизации критериев и оценок; особенности технологии производства изделий электронной техники.	нологических процессов с использованием алгоритмов оптимизации технологических процессов производства изделий электронной техники.	логичности изделий электронной техники и процессов их изготовления; алгоритмами и методикам автоматизированной разработки оптимальных технологических процессов
Виды занятий	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные работы; Лекции; Самостоятельная работа; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Интерактивные лекции; Практические занятия; Лабораторные работы; Лекции; Самостоятельная работа; 	 Интерактивные практические занятия; Интерактивные лабораторные занятия; Лабораторные работы; Самостоятельная работа;
Используемые средства оценивания	Отчет по лабораторной работе;Опрос на занятиях;Реферат;Экзамен;	Отчет по лабораторной работе;Опрос на занятиях;Реферат;Экзамен;	Отчет по лабораторной работе;Реферат;Экзамен;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 8.

Таблица 8 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	• Критерии, обеспечивающие технологичность изделий электронной техники и процессов их изготовления, методы оценки экономической эффективности технологических процессов; методы оптимизации критериев и оценок; особенности технологии производства изделий электронной техники.;	• Обеспечивать технологичность изделий электронной техники и процессов их изготовления, оценивать экономическую эффективность технологических процессов с использованием алгоритмов оптимизации технологических процессов производства изделий электронной техники.;	• Навыками оценки экономической эффективности технологических процессов производства изделий электронной техники и обеспечения технологичности изделий электронной техники и процессов их изготовления; алгоритмами и методикам автоматизированной разработки оптимальных технологических процессов;
Хорошо (базовый уровень)	• Критерии, обеспечивающие технологичность изделий электронной техники и процессов их изготовления, методы оценки эконо-	• Обеспечивать техно- логичность изделий электронной техники и процессов их изготовле- ния, оценивать эконо- мическую эффектив-	• Навыками оценки экономической эффективности технологических процессов производства изделий электронной техники и

	мической эффективно- сти технологических процессов.;	ность технологических процессов.;	обеспечения техноло- гичности изделий элек- тронной техники и про- цессов их изготовления;
Удовлетворительн о (пороговый уровень)	• Критерии, обеспечивающие технологичность изделий электронной техники и процессов их изготовления.;	• Обеспечивать технологичность изделий электронной техники и процессов их изготовления.;	• Навыками обеспечения технологичности изделий электронной техники и процессов их изготовления;

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

3.1 Темы рефератов

- Рентгеновская литография.
- Химическое травление.
- Плазменное травление.
- Легирование.
- Травление ионной бомбардировкой.
- Метод съемного шаблона.
- Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодоманипулированных сигналов.
 - Нелинейная обработка сигналов. Пьезоэлектрические конвольверы.
 - Многополосковые ответвители. Мультиплексоры на ПАВ.
 - Линии задержки (ЛЗ) на ПАВ.
 - Вносимые потери и ложные сигналы.
 - Полоса пропускания ЛЗ. Температурная стабильность. Динамический диапазон.
 - Резонаторы.
 - Генераторы на ПАВ. Стабильность генераторов.
 - Полосовые фильтры.
 - Фильтры линейно-частотно-модулированных (ЛЧМ) сигналов.
 - Акустоэлектронные частотомеры.
 - Акустооптические модуляторы.
 - Акустооптические частотомеры.
 - Акустооптические анализаторы спектра.
 - Акустооптические устройства обработки сложных сигналов.
 - Согласованные фильтры.

3.2 Темы опросов на занятиях

- Методы обработки подложек и звукопроводов.
- Методы экспонирования рисунков на полимерные пленки.
- Оптическая проекционная печать.
- Электронная проекционная литография.
- Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодоманипулированных сигналов.
 - Нелинейная обработка сигналов. Пьезоэлектрические конвольверы.
 - Многополосковые ответвители. Мультиплексоры на ПАВ.

3.3 Экзаменационные вопросы

- Линии задержки (ЛЗ) на ПАВ.
- Вносимые потери и ложные сигналы. Полоса пропускания ЛЗ. Температурная стабильность. Динамический диапазон.
 - Резонаторы на ПАВ.
 - Генераторы на ПАВ. Стабильность генераторов.
 - Полосовые фильтры на ПАВ.
 - Фильтры линейно-частотно-модулированных (ЛЧМ) сигналов.
 - Акустоэлектронные частотомеры.
- Фазокодированные преобразователи. Устройства формирования и обработки фазо-кодоманипулированных сигналов.
 - Нелинейная обработка сигналов. Пьезоэлектрические конвольверы.
 - Многополосковые ответвители. Мультиплексоры на ПАВ.
 - Методы обработки подложек и звукопроводов.
 - Методы экспонирования рисунков на полимерные пленки.
 - Оптическая проекционная печать.
 - Электронная проекционная литография. Рентгеновская литография.
 - Химическое травление. Плазменное травление. Травление ионной бомбардировкой.
 - Акустооптические модуляторы.
 - Акустооптические частотомеры.
 - Акустооптические анализаторы спектра.
 - Акустооптические устройства обработки сложных сигналов. Согласованные фильтры.

3.4 Темы лабораторных работ

- Исследование акустооптического модулятора.
- Исследование планарного акустооптического модулятора
- Исследование линий задержки на ПАВ
- Исследование полосового фильтра на ПАВ

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

 методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы фор-мирования компетенций, согласно п.
 12 рабочей программы.

4.1. Основная литература

1. Акустоэлектронные приборы и устройства: Учебное пособие / Серебренников Л. Я., Шандаров С. М., Буримов Н. И. - 2012. 70 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/2851, свободный.

4.2. Дополнительная литература

1. Оптические и акустооптические системы обработки информации: Учебное пособие / Башкиров А. И. - 2012. 100 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/1819, свободный.

4.3. Обязательные учебно-методические пособия

- 1. Исследование линий задержки на ПАВ: Методические указания к лабораторной работе / Буримов Н. И., Шандаров С. М. 2013. 15 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2856, свободный.
- 2. Акустоэлектронные приборы и устройства: Методические указания по самостоятельной работе / Серебренников Л. Я., Буримов Н. И., Шандаров С. М. 2012. 12 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2853, свободный.
- 3. Исследование полосового фильтра на ПАВ: Методические указания к лабораторной работе / Буримов Н. И., Шандаров С. М. 2013. 14 с. [Электронный ресурс] Режим доступа:

https://edu.tusur.ru/publications/2857, свободный.

- 4. Исследование акустооптического модулятора: Методические указания к лабораторной работе / Буримов Н. И., Шандаров С. М. 2013. 12 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2858, свободный.
- 5. Интегральная оптоэлектроника: Методические указания к лабораторной работе / Башкиров А. И., Буримов Н. И., Литвинов Р. В., Саликаев Ю. Р. 2013. 39 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2971, свободный.
- 6. Квантовые и оптоэлектронные приборы и устройства: Методические указания к практическим занятиям / Мягков А. С. 2012. 53 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2495, свободный.

4.4. Базы данных, информационно справочные и поисковые системы

1. Scopus, Web of Science