МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	3	/ТВЕРЖДАЮ:						
Пр	Проректор по учебной работе							
		П.Е.Троян						
	»	2017 г						

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ДИСКРЕТНАЯ МАТЕМАТИКА

Уровень основной образовательной программы бакалавриат

Направление(я) подготовки (специальность) 11.03.01 «Радиотехника»

Профиль(и) «Радиотехнические средства передачи, приема и обработки сигналов»

Форма обучения очно-заочная

Факультет ЗиВФ (заочный и вечерний факультет)

Кафедра СВЧ и КР(сверхвысокочастотной и квантовой радиотехники)

Курс 3

Семестр 5

Учебный план набора 2013г. и последующих лет

Распределение рабочего времени:

№	Виды учебной работы	Семестр 1	Семестр 2	Семестр 3	Семестр 4	Семестр 5	Семестр 6	Семестр 7	Семестр 8	Всего	Едини- цы
1.	Лекции					18				18	часов
2.	Лабораторные работы										часов
3.	Практические занятия					18				18	часов
4.	Курсовой проект/работа (КРС)										часов
5.	Всего аудиторных занятий					36				36	часов
6.	Из них в интерактивной форме					8				8	часов
7.	Самостоятельная работа студентов (СРС)					72				72	часов
8.	Всего (без экзамена)					108				108	часов
9.	Самост. работа на сдачу экзамена										часов
10.	Общая трудоемкость					108				108	часов
	(в зачетных единицах)					3				3	3ET

Зачет 5 семестр

Диф. зачет не предусмотрен

Экзамен не предусмотрен

Томск 2017

Лист согласований

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 11.03.01 «Радиотехника», утвержденного 06.03.2015г., №179

рассмотрена и утверждена на заседании кафедр	ры 5 октября 2017 г., протокол № 296
Разработчик: профессор кафедры Математики	Ю.П.Шевелёв
Зав. обеспечивающей кафедрой Математики	А.Л. Магазинникова
Рабочая программа согласована с факультето кафедрами направления подготовки (специальнос	
Декан ЗиВФ	И.В. Осипов
Зав. профилирующей кафедрой СВЧиКР	С.Н.Шарангович
Зав. выпускающей кафедрой СВЧиКР	С.Н.Шарангович
Эксперты: профессор кафедры Математики	А.А Ельцов
профессор кафелры СВЧиКР	А Е Манлель

- 1. Цели и задачи дисциплины: Целью преподавания дисциплины «Дискретная студентами основ математического математика» является изучение применяемого для решения прикладных инженерных задач, а также задач управления и алгоритмизации процессов обработки информации. Курс является вводным и призван ознакомить студентов с элементами теории множеств, логическими функциями, комбинаторикой, графами и конечными автоматами. Главными задачами курса дискретной математики являются развитие логического и комбинаторного мышления овладение метолами дискретного анализа студентов. И их применение программировании и в проектировании радиоэлектронных устройств дискретного действия.
- 2. Место дисциплины в структуре ОПОП: дискретная математика относится к базовой части дисциплин Б1.Б.5.3 Для изучения курса дискретной математики необходимо твердое знание студентами базового курса математики средней школы. Дискретная математика призвана дать студентам математический аппарат, который будет использоваться в дальнейшем при изучении дисциплин базового цикла, а также при изучении дисциплин профессионального цикла, в учебно-исследовательской и научно-исследовательской работе.
- **3. Требования к результатам освоения дисциплины:** процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-2 - способность выявлять естественно-научную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат

В результате изучения дисциплины студент должен:

Знать: основы теории множеств, алгебры логики, теории комбинационных схем и автоматов с памятью, комбинаторики и теории графов.

Уметь применять полученные знания по дискретной математике, соответствующий математический аппарат для решения типовых и профессиональных задач из области цифровой техники, а также для освоения других дисциплин, предусмотренных учебным планом.

Владеть: основными методами решения задач дискретного характера с применением булевой алгебры, комбинаторики и других разделов дискретной математики.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет <u>3</u> зачетные единицы.

Вид учебной работы	D	Семестры				
	Всего часов	1	2	3	5	
Аудиторные занятия (всего)	36				36	
В том числе:	-	-	-	-	_	
Лекции	18				18	
Лабораторные работы (ЛР)						
Практические занятия (ПЗ)	18				18	
Семинары (С)						
Коллоквиумы (К)						
Курсовой проект/(работа) (аудиторная нагрузка)						
Другие виды аудиторной работы						
Контрольные работы						
Самостоятельная работа (всего)	72				72	
В том числе:						
Курсовой проект (работа) (самостоятельная работа)						
Расчетно-графические работы						
Реферат						
Другие виды самостоятельной работы						
Изучение теоретического материала, подготовка к практическим занятиям	20				20	
Подготовка к тестированию	16				16	
Решение задач. Подготовка к контрольным работам	16				16	
Выполнение индивидуальных домашних заданий	20				20	
Вид промежуточной аттестации – зачёт						
Общая трудоемкость (час.)	108				108	
Зачетные Единицы Трудоемкости	3				3	

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисциплины		Лаборат. занятия	Практич. занятия.	Курсовой П/Р (КРС)	Самост. рабо- та студента	Всего час. (без экзам)	Формируемые компетенции (ОК, ПК)
1.	Теория множеств	2		3		12	17	ОПК-2
2.	Алгебра логики (булева алгебра)			3		12	20	ОПК-2
3.	Пороговая логика	2		3		12	17	ОПК-2
4.	Конечные автоматы			3		12	17	ОПК-2
5.	Комбинаторика			3		12	20	ОПК-2
6.	Теория графов	2		3		12	17	ОПК-2

5.2. Содержание разделов дисциплины (по лекциям)

	11		Т	Формируе-
№ п/п	Наимено- вание раз-	Содержание разделов	Трудо- ёмкость	мые компе- тенции
11/11	делов		(час.)	(ОК, ПК)
1.	Теория множеств	Понятия конечного и бесконечного множеств. Актуальная и потенциальная бесконечности. Подмножества. Пустое множество. Синглетон. Булеан. Операции над множествами: объединение, пересечение, дополнение, разность и симметрическая разность. Диаграммы Венна. Теоремы поглощения, склеивания и де Моргана. Декартово произведение множеств. Бинарные отношения. Степень множества.	2	ОПК-2
2.	Алгебра логики (бу- лева алгеб- ра)	Понятие высказывания. Аксиомы алгебры логики. Логические операции: дизъюнкция, конъюнкция, инверсия, равнозначно, неравнозначно, импликация. Теоремы одной переменной. Теоремы склеивания, поглощения, де Моргана. Дизъюнктивные нормальные формы (ДНФ) и конъюнктивные нормальные формы (ДНФ) и конъюнктивные нормальные формы (КНФ) логических выражений. Понятие булевой функции. Табличный и аналитический способы задания булевых функций. Минимальные и максимальные термы. Совершенные дизъюнктивные нормальные формы (СДНФ) булевых функций и совершенные конъюнктивные нормальные формы (СКНФ). Теоремы Шеннона о разложении булевых формул. Способы нахождения СДНФ и СКНФ. Алгебраическое упрощение булевых формул. Метод Квайна. Понятие импликанты и простой импликанты. Сокращённые ДНФ и КНФ. Метод Петрика. Карты Вейча (диаграммы Карно). Минимизация булевых формул при помощи карт Вейча. Неполностью определённые булевы функции, их минимизация в классе ДНФ и КНФ. Формы высших порядков. Понятие абсолютно минимальной формы.	5	ОПК-2
3.	Пороговая логика	Понятие пороговой функции. Веса и порог. Минимальные ДНФ и КНФ пороговых функций. Теоремы о пороговых функциях.	2	ОПК-2
4.	Конечные автоматы	Простейшие диодно-резисторные схемы. Электрические схемы потенциальных логических элементов И, ИЛИ, НЕ и их условные обозначения. Логический синтез комбинационных схем. Синтез преобразователя кодов (на примере преобразователя циклического кода в весовой двоичный код). Асинхронные автоматы на <i>T</i> -триггерах. Анализ и синтез синхронных автоматов на <i>JK</i> -триггерах.	2	ОПК-2
5.	Комбина- торика	Правила произведения и суммы в комбинаторике. Правило суммы и диаграммы Венна. Комбинаторные конфигурации: перестановки, размещения и сочетания без повторений и с повторениями. Комбинаторные задачи.	5	ОПК-2
6.	Теория графов	Понятия графа, псевдографа, мультиграфа, подграфа, надграфа и частичного графа. Смежность, инцидентность, степень вершины. Однородный граф, полный граф, дополнение графа. Объединение и пересечение графов. Понятие изоморфизма. Матрицы смежности и инцидентности. Маршруты, цепи, циклы в связном графе. Степень связности графа. Нахождение всех простых цепей, соединяющих две вершины графа. Эйлеровы цепи и циклы, Уникурсальная линия. Гамильтоновы графы. Задача о коммивояжёре (две формулировки). Двудольные графы. Полные двудольные графы. Планарные и плоские графы. Теорема Эйлера о плоских графах. Гомеоморфизм. Клики в графе. Критерий Понтрягина-Куратовского.	2	ОПК-2

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предылушими) и обеспечиваемыми (последующими) дисциплинами

№ п/п	цими) и обеспечиваемыми (последующими) Наименование обеспечиваемых (последующих) дис- циплин	№ № разделов данной дисциплины из табл.5.1, для которых необходимо изучение обеспечивающих (предыдущих) и обеспечиваемых (последующих) дисциплин					
		1	5	6			
	Последующие дист	<u> </u>	<u> </u>		<u> </u>		
1	Цифровые устройства и микропроцессоры						
2	Цифровая обработка сигналов	+	+	+	+	+	+
3	Радиоавтоматика		+	+	+		
4	Основы компьютерного проектирования РЭС	+	+	+	+		
5	Цифровая связь	+	+	+	+	+	+
6	Космические системы связи		+	+	+		
7	Аналоговые и цифровые быстродействующие устройства		+		+		
8	Проектирование устройств приема и обработки сигналов		+	+	+		+
9	Электропреобразовательные устройства радиоэлектронных систем		+		+		+
10	Методы моделирования и оптимизации ра- диоэлектронных систем		+				
11	Аппаратные средства контроля и управления РЭС		+	+	+	+	

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень ком-		Ви	ды заня	тий		Формы контроля
петенций	Л	Лаб	Пр.	КР/КП	CPC	
ОПК-2	+		+		+	Ответ на практическом занятии. Опрос по
						материалам лекции. Тестирование. Контроль-
						ная работа.

 Π – лекция, Π р – практические и семинарские занятия, Π аб – лабораторные работы, $KP/K\Pi$ – курсовая работа/проект, CPC – самостоятельная работа студента

6. Методы и формы организации обучения Технологии интерактивного обучения при разных формах занятий в часах

Формы Методы	Лекции (час)	Практические занятия (час)	Тренинг Мастер-класс (час)	СРС (час)	Всего
Презентации с использованием раздаточных материалов, слайдов, мультимедийные презентации с обсуждением	2	2			4
Тесты	2	2			4
Итого интерактивных занятий	4	4		0	8

7. Лабораторный практикум не предусмотрено

8. Практические занятия (семинары)

№	№ раздела	Тематика практических занятий (семинаров)	Трудо-	Компе-
Π/Π	дисциплины		емкость	тенции
	из табл. 5.1		(час.)	ОК, ПК
1.	1	Операции над множествами: объединение, пересечение, дополнение, разность и симметрическая разность. Диаграммы Венна. Теоремы поглощения, склеивания и де Моргана. Декартово произведение множеств. Бинарные отношения. Степень множества. Симметрия, рефлексивность и транзитивность отношений. Отношение эквивалентности. Понятие нечёткого множества. Объединение, пересечение и дополнение нечетких множеств.	3	ОПК-2
2.	2	Теоремы склеивания, поглощения, де Моргана. Табличный и аналитический способы задания булевых функций. Теоремы Шеннона о разложении булевых формул. Способы нахождения СДНФ и СКНФ. Алгебраическое упрощение булевых формул. Метод Квайна. Понятие импликанты и простой импликанты. Сокращённые ДНФ и КНФ. Метод Петрика. Карты Вейча (диаграммы Карно). Минимизация булевых формул при помощи карт Вейча. Неполностью определённые булевы функции, их минимизация в классе ДНФ и КНФ. Формы высших порядков. Симметрические функции, способы их представления. Рабочее число (ачисло) симметрической функции. Распознавание симметрических функций. Понятие изображающего числа булевы функции. Операции над изображающими числами. Булевы уравнения и их решение при помощи изображающих чисел.	3	ОПК-2
3.	3	Минимальные ДНФ и КНФ пороговых функций. Нахождение пороговых функций. Мажоритарные функции. Симметрические мажоритарные функции.	3	ОПК-2
4.	4	Простейшие диодно-резисторные схемы. Электрические схемы потенциальных логических элементов И, ИЛИ, НЕ и их условные обозначения. Логический синтез комбинационных схем. Синтез преобразователя кодов (на примере преобразователя циклического кода в весовой двоичный код). Логические схемы триггеров типа RS, T и JK. Асинхронные автоматы на T-триггерах. Анализ и синтез синхронных автоматов на JK-триггерах. Распределители импульсов. Контактная интерпретация булевых функций. Логический синтез контактных структур.	3	ОПК-2

5.	5	Правила произведения и суммы в комбинаторике. Правило суммы и диаграммы Венна. Комбинаторные конфигурации:	3	ОПК-2
		перестановки, размещения и сочетания без повторений и с		
		повторениями. Решение комбинаторных задач. Разбиения множества на подмножества. Комбинаторные задачи теории вероятностей.		
6.	6	Матрицы смежности и инцидентности. Нахождение всех	3	ОПК-2
		простых цепей, соединяющих две вершины графа. Эйлеро-		01111 2
		вы графы. Планарные и плоские графы. Двойственные гра-		
		фы. Деревья и лес. Кодирование деревьев методом Пруфе-		
		ра. Маршруты, цепи и циклы в орграфе. Связность орграфа.		
		Эйлеровы цепи и циклы в орграфе.		

9. Самостоятельная работа

No	№ раздела	Тематика самостоятельной работы	Трудо-	Компе-	Контроль вы-
Π/Π	дисциплины	(детализация)	емкость	тенции	полнения рабо-
	из табл. 5.1		(час.)	ОК, ПК	ты (Опрос, тест,
-	1	11	10	OHIC 2	дом.задание, и т.д)
1.	1	Изучение теоретического материала, подго-	12	ОПК-2	Опрос на прак-
		товка к практическим занятиям. Решение			тических заня-
		задач, подготовка к контрольной работе.			тиях. Тестиро-
		Темы: Декартово произведение множеств. Бинарные отношения. Степень множества.			вание.
		Симметрия, рефлексивность и транзитив-			
		ность отношений. Отношение эквивалентно-			
		сти. Бесконечные множества: счётные и не-			
		счётные. Гипотеза континуума. Трансцен-			
		дентные числа. Трансфинитные числа. Пара-			
		доксы теории множеств. Понятие нечёткого			
		множества. Основные операции над нечёт-			
		кими множествами.			
2.	2	Самостоятельное изучение тем: Симметри-	12	ОПК-2	Опрос на прак-
		ческие функции, способы их представления.			тических заня-
		Рабочее число (а-число) симметрической			тиях. Три кон-
		функции. Распознавание симметрических			трольных ра-
		функций. Понятие изображающего числа			боты. Тестиро-
		булевой функции. Операции над изобра-			вание. Инди-
		жающими числами. Булевы уравнения и их			видуальное
		решение методом изображающих чисел.			задание
		Изучение теоретического материала, подго-			
		товка к практическим занятиям.			
		Темы: Табличный и аналитический способы			
		задания булевых функций. Способы нахож-			
		дения СДНФ и СКНФ. Алгебраическое уп-			
		рощение булевых формул. Метод Квайна.			
		Понятие импликанты и простой импликанты. Сокращённые ДНФ и КНФ. Метод Пет-			
		рика. Карты Вейча (диаграммы Карно). Ми-			
		нимизация булевых формул при помощи			
		карт Вейча. Неполностью определённые бу-			
		левы функции, их минимизация в классе			
		ДНФ и КНФ. Формы высших порядков.			
		Симметрические функции, способы их пред-			
		ставления. Распознавание симметрических			
		функций. Понятие изображающего числа			
		булевой функции. Операции над изобра-			
		жающими числами. Булевы уравнения и их			
		решение при помощи изображающих чисел.			
		Решение задач по всем темам, подготовка к			
		контрольной работе.			

3.	3	Изучение теоретического материала, подго-	12	ОПК-2	Опрос на прак-
٥.		товка к практическим занятиям. Решение	12	OTIK-2	тических заня-
		задач, подготовка к контрольной работе.			тиях. Кон-
		Темы: Нахождение пороговых функций.			трольная рабо-
		Мажоритарные функции. Симметрические			та. Тестирова-
		мажоритарные функции. Симметрические			ние.
4.	4	Изучение теоретического материала, подго-	12	ОПК-2	Опрос на прак-
4.	4	товка к практическим занятиям. Решение	12	OHK-2	тических заня-
		_			тиях. Тестиро-
		задач на тему: анализ асинхронного автомата. Подготовка к контрольной работе.			вание. Инди-
					видуальное
		Темы: Синтез синхронных автоматов на <i>Т</i> -			
		триггерах и <i>JK</i> -триггерах. Распределители			задание
		импульсов. Контактная интерпретация буле-			
		вых функций. Логический синтез контакт-			
		ных структур. Основная модель конечного			
		автомата. Автомат Мили, автомат Мура.			
		Эксперименты с автоматами. Тестирование			
		автоматов.	10	0.000	
5.	5	Разбиения множества на подмножества.	12	ОПК-2	Опрос на прак-
		Комбинаторные задачи теории вероятностей.			тических заня-
		Задача о покрытии множеств. Латинские			тиях. Кон-
		прямоугольники и квадраты. Блок-схемы.			трольная рабо-
		Конечные проективные плоскости. Матрицы			та.
		Адамара. Подготовка к практическим заня-			
		тиям на тему: решение комбинаторных за-			
		дач.			
6.	6	Двойственные графы. Деревья и лес. Фунда-	8	ОПК-2	Опрос на прак-
		ментальная система циклов. Кодирование			тических заня-
		деревьев методом Пруфера. Разрезы. Хрома-			тиях. Кон-
		тическое число графа. Гипотеза четырёх кра-			трольная рабо-
		сок. Понятие ориентированного графа. Сте-			та. Индивиду-
		пень вершины орграфа. Маршруты, цепи и			альное задание
		циклы в орграфе. Связность орграфа. Эйле-			
		ровы цепи и циклы в орграфе. Полный орг-			
		раф. О теории трансверсалей. Нахождение			
		всех трансверсалей. Понятие транспортной			
		сети. Нахождение максимальной пропускной			
		способности транспортной сети. Орграфы и			
		бинарные отношения. Анализ графа цепи			
		Маркова. Изучение теоретического материа-			
		ла, подготовка к практическим занятиям.			
		Подготовка к контрольной работе.			
		Темы: Нахождение всех простых цепей, со-			
		единяющих две вершины графа. Эйлеровы			
		графы. Двойственные графы. Кодирование и			
		декодирование деревьев методом Пруфера.			
		деледирование дереввев методом пруфера.	l .		

10. Примерная тематика курсовых проектов (работ) не предусмотрено

11. Рейтинговая система для оценки успеваемости студентов Таблица 11.1 Балльные оценки для элементов контроля.

Элементы учебной дея-	Максимальный	Максимальный балл	Максимальный	Всего
тельности	балл на 1-ю КТ с	за период между 1-й	балл между второй	за се-
	начала семестра	КТ и 2-й КТ	КТ и на конец се-	местр
			местра	
Премиальные баллы	5	5		10
Контрольные работы на	30	10	20	60
практических занятиях				
Тестирование, опрос	10	5	5	20
Индивидуальные задания			10	10
Итого максимум за период:	45	20	35	100

Таблица 11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает ус- пешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 – 100	А (отлично)
4 (vonovo)		В (очень хорошо)
4 (хорошо) (зачтено)	70 – 89	С (хорошо)
(зачтено)		D (удордотрорутоду но)
3 (удовлетворительно)	60 – 69	D (удовлетворительно)
(зачтено)		Е (посредственно)
2 (неудовлетворительно), (не зачтено)	0 – 59	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины.

12.1. Основная литература.

1.Шевелев, Ю.П. Дискретная математика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2016. — 592 с. — Режим доступа:

http://e.lanbook.com/book/71772

12.2. Дополнительная литература.

1. Глухов, М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов. [Электронный ресурс] / М.М. Глухов, О.А. Козлитин, В.А. Шапошников, А.Б. Шишков. — Электрон. дан. — СПб. : Лань, 2008. — 112 с. — Режим доступа:

http://e.lanbook.com/book/112

2. Копылов, В.И. Курс дискретной математики. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2011. — 208 с. — Режим доступа: http://e.lanbook.com/book/1798

12.3. Учебно-методические пособия 12.3.1 Обязательные учебно-методические пособия

Практические занятия проводятся по учебным пособиям:

1.Шевелев, Ю.П. Сборник задач по дискретной математике (для практических занятий в группах). [Электронный ресурс] / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев. — Электрон. дан. — СПб. : Лань, 2013. — 528 с. — Режим доступа:

http://e.lanbook.com/book/5251

Задания на контрольные работы и индивидуальные задания приведены в каждом из следующих учебных пособий:

1.Шевелев, Ю.П. Дискретная математика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2016. — 592 с. (рекомендовано для самостоятельной работы) — Режим доступа: http://e.lanbook.com/book/71772

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информапии

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно справочные и поисковые системы:

Образовательный портал университета (https://edu.tusur.ru), электронный каталог библиотеки (http://e.lanbook.com) система дистанционного образования MOODLE (методические материалы: текстовые, аудио и видеофайлы, индивидуальные задания, тесты и т.д.)

Ссылки с сайта кафедры на математические ресурсы и он-лайн тренажёры.

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 90, оборудованная доской, компьютером, проектором и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для практических занятий

Для проведения практических (семинарских) занятий используется учебная аудитория с количеством посадочных мест не менее 30, оборудованная доской, стандартной учебной мебелью. Для внедрения элементов электронного обучения необходимы минимум 1 компьютер на 2 студента, Mathcad, Octave или MatLAB.

13.1.3. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория, с количеством посадочных мест не менее 30, оборудованная доской, стандартной учебной мебелью. Для внедрения элементов электронного обучения необходимы минимум 1 компьютер на 2 студента, Mathcad, Octave или MatLAB.

13.2 Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема-передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема-передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Фонд оценочных средств

14.1 Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с ограниченными возможностями здоровья предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно-двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанцион- ными методами
С ограничениями по общемедицинским по- казаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ					
Пр	Проректор по учебной работе				
		П. Е. Троян			
‹ ‹	>>	2017 г.			

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ДИСКРЕТНАЯ МАТЕМАТИКА

Уровень основной образовательной программы бакалавриат

Направление(я) подготовки (специальность) 11.03.01 «Радиотехника»

Профиль(и) «Радиотехнические средства передачи, приема и обработки сигналов»

Форма обучения очно-заочная

Факультет ЗиВФ (заочный и вечерний факультет)

Кафедра СВЧиКР (сверхвысокочастотной и квантовой радиотехники)

Курс 3

Семестр 5

Учебный план набора 2013г. и последующих лет

Томск 2017

Зачет 5 семестр

1 Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины дискретная математика и представляет собой совокупность контрольно-измерительных материалов (типовые задачи, контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов. Перечень закрепленных за дисциплиной компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-2	способность выявлять естественно- научную сущность проблем, возникаю- щих в ходе профессиональной деятель- ности, привлекать для их решения соот- ветствующий физико-математический аппарат	Должен знать основы теории множеств, алгебры логики, теории комбинационных схем и автоматов с памятью, комбинаторики и теории графов. Должен уметь применять полученные знания по дискретной математике для решения типовых и профессиональных задач из области цифровой техники, а также для освоения других дисциплин, предусмотренных учебным планом. Должен владеть основными методами решения задач дискретного характера с применением булевой алгебры, комбинаторики и других разделов дискретной математики, соответствующим математическим аппаратом.

2 Реализация компетенций

1 Компетенция ОПК-2

ОПК-2: способность выявлять естественно-научную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Основы теории множеств, алгебры логики, теории комбинационных и многотактных схем, комбинаторики и теории графов.	Умеет применять полученные знания по дискретной математике, соответствующий математический аппарат для решения типовых и профессиональных задач из области цифровой техники, а также для освоения других дисциплин, предусмотренных учебным планом.	Владеет основными методами решения задач дискретного характера с применением булевой алгебры, комбинаторики и других разделов дискретной математики, соответствующим математическим аппаратом.

	T	1	
Виды занятий	• Лекции;	• Практические заня-	• Практические
	• Практические занятия;	тия;	занятия;
	• Самостоятельная работа сту-	• Выполнение инди-	• Выполнение
	дентов.	видуального задания;	индивидуального
		• Самостоятельная	задания;
		работа студентов.	• Самостоятель-
			ная работа студен-
			тов.
Используемые сред-	• Тест;	• Контрольная рабо-	• Контрольная
ства оценивания	• Контрольная работа;	та;	работа;
ства оценивания	• Зачёт	• Оформление ин-	• Оформление и
	Su ici	дивидуального задания;	защита индивиду-
		• Зачёт	ального задания;
		Janei	• Зачёт
			Jager

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3:

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице~4.

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает системными и глубокими знаниями в пределах изучаемых разделов дискретной математики с пониманием границ их применимости.	Обладает диапазоном практических умений, требуемых для творческих решений в области дискретных структур.	Контролирует выполняемую работу, проводит оценку выполненной работы, модифицирует этапы работы.
Хорошо (базовый уровень)	Обладает знаниями основных понятий дискретной математики на уровне определений и взаимосвязей между ними в пределах изучаемых математических разделов.	Обладает диапазоном практических умений, требуемых для решения типовых задач на дискретных структурах с элементами исследования.	Оперирует основными методами решения типовых и исследовательских задач дискретного характера.
Удовлетворительно (пороговый уровень)	Обладает знаниями основных понятий дискретной математики на уровне определений и обозначений, способен применять алгоритмы решения простых типовых задач.	Обладает основными умениями, требуемыми для выполнения несложных типовых задач.	Работает под прямым наблюдением и регулярным контролем.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и крите- рии	Знать	Уметь	Владеть
Отлично (высокий уровень)	• раскрывает сущность понятий дискретной математики, проводит их характеристику; • обосновывает выбор математического метода, план, этапы решения задачи дискретного характера.	• свободно применяет методы решения задач в незнакомых ситуациях на дискретных структурах; • умеет математически обосновывать и аргументированно доказывать положения дискретной математики.	• свободно оперирует методами дискретной математики; • организует коллективное выполнение работы, затрагивающей изучаемую дисциплину; • свободно владеет разными способами представления математической информации.
Хорошо (базовый уровень)	• дает определения основных понятий дискретной математики и приводит примеры их применения; • аргументирует выбор метода решения задачи; • составляет план решения задачи.	• способен различить стандартные и новые ситуации при решении задач дискретного характера; • умеет корректно выражать и аргументированно обосновывать положения изучаемых разделов дискретной математики.	• критически осмысливает по- лученные знания; • способен работать в коллективе, занятом решением задачи из области дискретных структур.
Удовлетворительно (пороговый уровень)	• воспроизводит основные факты, идеи, относящиеся к дискретным структурам; • распознает основные объекты из области дискретной математики; • знает алгоритмы решения типовых задач дискретной математики.	• умеет применять на практике алгоритмы решения типовых задач дискретного характера; • умеет работать со справочной литературой по дискретной математике; • умеет оформлять результаты своей работы.	• владеет основной терминологией дискретной математики; • способен участвовать в обсуждениях проблематичных вопросов дискретной математики в пределах освоенных разделов.

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

Тест: итоговый тест по элементарным знаниям и практическим навыкам.

Образцы тестов, по одному от каждой из основных тем, имеют вид (всего 300 тестов):

1. Найти элементы множества:

$$P_1 = A \cap \overline{B} \cap C$$

если $I = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, и известно, что:

$$A = \{0, 1, 3, 4, 5, 6\};$$

$$B = \{0, 2, 3, 4, 8\};$$

$$C = \{0, 1, 3, 5, 7\}; (0238)$$

2. Сколько минтермов содержит булева функция, заданная формулой вида

$$f = AB + \overline{B}C + BD$$
.

3. Найти остаточную функцию при D = 1. Представьте остаточную функцию в СДНФ и укажите десятичные номера минтермов:

$$f = AE + BC + BD + A\overline{C}\overline{E} + \overline{B}\overline{C}D.$$

4. Сколько логических элементов И и сколько элементов ИЛИ в комбинационной схеме, построенной на основе булевой функции вида:

$$f = [AE + B(C + BD + A\overline{C}\overline{E})] + \overline{B}\overline{C}D.$$

- 5. Сколько существует чётных 12-значных двоичных чисел, начинающихся с последовательности 101?
 - 6. Сколько чётных вершин в графе:

$$G = \{\{1,2\},\{1,3\},\{1,4\},\{2,2\},\{2,5\},\{3,3\},\{4,5\},\{4,6\},\{6,7\}\}\}$$

Контрольные работы по темам:

- 1. Теория множеств.
- 2. Булева алгебра.
- 3. Булево дифференциальное и интегральное исчисления.
- 4. Конечные автоматы.
- 5. Теория графов.
- 6. Комбинаторика.

Контрольные работы представлены в 50 различных вариантах.

Образец первого варианта:

1. Найти элементы множества:

$$P_{1} = A \cap \overline{B} \cap C \oplus \overline{A} \cap B \cap \overline{C} \oplus A \cap C,$$

если $I = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, и известно, что:

$$A = \{0, 1, 3, 4, 5, 6\};$$

$$B = \{0, 2, 3, 4, 8\};$$

$$C = \{0, 1, 3, 5, 7\}; (0238)$$

2. Сколько знаков дизъюнкции и сколько букв в минимальной КНФ следующей функции, зависящей от четырёх переменных (в квадратных скобках указаны неопределённые состояния)?

$$f = (2, 4, 5, 6, 8, 9, 10, 11);$$
 [3, 12, 15].

3. Найти производную от булевой функции по переменной D:

$$P_1 = A\overline{B} + CD + B\overline{C} + AB\overline{C},$$

- 4. Построить многотактный автомат, реализующий две последовательности:
- если A = 0, то 0, 2, 6, 3, 7, 5, 4, 1;
- если A = 1, то 3, 7, 6, 0, 2, 5, 4, 1.
- 5. Найдите все простые цепи, соединяющие вершины 1 и 6 графа. Для самоконтроля укажите числа a, b, c, d, где a число простых цепей, содержащих по 2 ребра, b число простых цепей, содержащих по три ребра, c по четыре ребра, и d по пять рёбер.

$$G = \{\{1,2\}, \{1,4\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{3,6\}, \{4,5\}, \{5,6\}\}\}. (026P)$$

6. Сколько существует шестизначных десятичных чисел, в каждом из которых цифра 8 встречается точно два раза, цифра 6 встречается точно два раза, а все остальные десятичные цифры – не более чем по одному разу? Числа могут начинаться с нуля. Например: 066288, 886162, 668890; (НОВ)

Темы лабораторных работ: не предусмотрены.

Темы для самостоятельной работы:

- 1. Декартово произведение множеств. Бинарные отношения. Степень множества. Симметрия, рефлексивность и транзитивность отношений. Отношение эквивалентности. Бесконечные множества: счётные и несчётные. Гипотеза континуума. Трансцендентные числа. Трансфинитные числа. Парадоксы теории множеств. Понятие нечёткого множества. Основные операции над нечёткими множествами.
- 2. Симметрические функции, способы их представления. Рабочее число (*а*-число) симметрической функции. Распознавание симметрических функций. Понятие изображающего числа булевой функции. Операции над изображающими числами. Булевы уравнения и их решение методом изображающих чисел.
- 3. Нахождение пороговых функций. Мажоритарные функции. Симметрические мажоритарные функции.
- Разбиения множества на подмножества. Комбинаторные задачи теории вероятностей. Задача о покрытии множеств. Латинские прямоугольники и квадраты. Блок-схемы. Конечные проективные плоскости. Матрицы Адамара.
- 5. Двойственные графы. Деревья и лес. Фундаментальная система циклов. Кодирование деревьев методом Пруфера. Разрезы. Хроматическое число графа. Гипотеза четырёх красок. Понятие ориентированного графа.

Темы курсового проекта: не предусмотрен.

Темы вопросов для зачёта:

1. Теория множеств

- 1. Что такое множество? приведите примеры множеств.
- 2. Перечислите виды множеств.
- 3. Какие числа называют натуральными?
- 4. Что такое натуральный ряд? Какие входят в него числа?
- 5. Является ли натуральным число нуль?
- 6. Какие числа называются простыми? Приведите пример.
- 7. Является ли простым число 1?
- 8. Как обозначается принадлежность элемента множеству?
- 9. Как читаются записи: $a, b, c \in A$; $a \notin A$; $a, b, c \notin A$?
- 10. Что такое синглетон?
- 11. Как задать множество прямым перечислением? Приведите пример.
- 12. Как задать множество при помощи формы? Приведите пример.
- 13. Какие множества называют равными?
- 14. Верно ли, что $\emptyset \neq \{\emptyset\}$ и почему?
- 15. Что такое кардинальное число конечного множества?
- 16. Чему равно кардинальное число пустого множества? Синглетона?
- 17. Как читаются записи: $|\{a, b, c\}| = 3; |A| = 6$?
- 18. Какие множества называют подмножествами? Поясните примером.
- 19. Что такое булеан множества. Приведите пример.
- 20. Охарактеризуйте основные операции над множествами: объединение, пересечение.
- 21. Что такое универсальное множество?
- 22. Охарактеризуйте операцию дополнения множества.
- 23. Что такое диаграмма Венна?
- 24. Поясните при помощи диаграмм Венна теоретико-множественные операции пересечения, объе-

- динения и дополнения.
- 25. Запишите формулы для теорем склеивания и поглощения.
- 26. Сформулируйте законы де Моргана для множеств.
- 27. В чём суть свойств коммутативности и ассоциативности операций пересечения и объединения?

2. Алгебра логики (булева алгебра)

- 28. Какие предложения называются высказываниями?
- 29. Какие переменные называются двоичными?
- 30. Запишите аксиомы алгебры логики для дизъюнкции, конъюнкции и инверсии.
- 31. Дайте определения операциям дизъюнкции, конъюнкции и инверсии.
- 32. Перечислите девять теорем одной переменной.
- 33. Запишите формулы алгебры логики для теорем склеивания и поглощения.
- 34. Сформулируйте дизъюнктивную и конъюнктивную теоремы де Моргана.
- 35. Приведите пример дизъюнктивной нормальной формы (ДНФ).
- 36. Приведите пример конъюнктивной нормальной формы (КНФ).
- 37. В какой форме представлено выражение A + B + C?
- 38. Охарактеризуйте понятие булевой функции.
- 39. В чём суть табличного способа представления булевой функции?
- 40. Что такое набор значений переменных?
- 41. Сколько существует наборов значений n переменных?
- 42. Пусть в таблице истинности пяти переменных колонка *f* содержит 20 единиц. Сколько в этой колонке нулей?
- 43. Что такое минимальный терм (минтерм)?
- 44. Сколько существует минтермов n переменных?
- 45. Что такое максимальный терм (макстерм)?
- 46. Сколько существует макстермов n переменных?
- 47. Что такое совершенная дизъюнктивная нормальная форма (СДНФ)? Приведите пример.
- 48. Что такое совершенная конъюнктивная нормальная форма (СКНФ)? Приведите пример.
- 49. Могут ли совпадать ДНФ и КНФ?
- 50. Как найти СДНФ, если функция задана таблицей истинности?
- Как найти СДНФ булевой функции, заданной аналитически в произвольной форме? Приведите пример.
- 52. Как найти СКНФ булевой функции, заданной в произвольной форме? Приведите пример.
- 53. На каких операциях основан алгебраический способ упрощения булевых формул? Приведите пример алгебраического упрощения булевой формулы.
- 54. Приведите пример упрощения булевой формулы методом Квайна.
- 55. Сформулируйте понятие импликанты.
- 56. Что такое простая импликанта?
- 57. Что такое минимальная ДНФ?
- 58. Как найти минимальную КНФ?
- 59. Что такое карта Вейча?
- 60. Как нанести булеву функцию на карту Вейча? Приведите пример.
- 61. Как найти СДНФ при помощи карты Вейча?
- 62. Как найти при помощи карты Вейча СДНФ инверсии заданной булевой функции, представленной аналитически в ДНФ?
- 63. Как найти СДНФ конъюнкции двух булевых функций при помощи карты Вейча?
- 64. Приведите пример минимизации булевой формулы при помощи карты Вейча.
- 65. Какие наборы называются неопределёнными?
- 66. Какие функции называются неполностью определёнными?
- 67. Сколько существует СДНФ функции n переменных при m неопределённых состояниях? Поясните, как их найти.
- 68. Какие формы булевых функций относятся к формам высшего порядка? Поясните примерами.
- 69. Что такое абсолютно минимальная форма?
- 70. Какими особенностями характеризуются симметрические булевы функции?
- 71. Что такое рабочее число (а-число) симметрической функции?
- 72. Что такое изображающее число булевой функции? Приведите пример.
- 73. Какие логические операции выполняются над изображающими числами?
- 74. Что такое булево уравнение?
- 75. Как решаются булевы уравнения с помощью изображающих чисел? Приведите пример.
- 76. Что такое сумма по модулю 2?
- 77. Как найти производную от булевой функции по одной из её переменных?

3. Пороговая логика

- 74. Что такое пороговая функция?
- 75. Как перевести пороговую функцию в базис И, ИЛИ, НЕ?
- 76. В каких пределах может изменяться пороговая величина при заданных весах переменных?
- 77. Какая пороговая функция называется мажоритарной? Приведите пример.
- 78. Сколько существует наборов значений *п* переменных, на которых мажоритарная функция принимает единичное значение?
- 79. Представьте заданную мажоритарную функцию в виде симметрической функции.

4. Конечные автоматы

- 82. Что такое автомат с прикладной (технической) точки зрения?
- 83. Какие логические элементы называют двоичными?
- 84. Изобразите электрические схемы диодно-резисторных элементов И, ИЛИ, НЕ.
- 85. Какие значения истинности соответствуют высокому и низкому уровням напряжения логических элементов И, ИЛИ, НЕ?
- 86. Какие булевы функции соответствуют логическим элементам И, ИЛИ, НЕ?
- 87. Изобразите логические схемы элементов Шеффера и Пирса.
- 88. Какие булевы функции соответствуют элементам Шеффера и Пирса?
- 89. Какие условные обозначения используются для логических элементов И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ?
- 90. Что такое комбинационная схема? Приведите пример.
- 91. Покажите на примере, как построить комбинационную схему по булевой функции, представленной в ДНФ, КНФ или форме высшего порядка.
- 92. В чём физический смысл операции суперпозиции применительно к логическим элементам?
- 93. Чем отличаются весовые двоичные коды от невесовых?
- 94. Как задаётся невесовой код?
- 95. Что такое код «2 из 5»?
- 96. Какими признаками характеризуется рефлексный код (код Грея)?
- 97. Как построить рефлексный код при помощи карты Вейча?
- 98. Приведите примеры весовых двоичных кодов.
- 99. Что такое преобразователь кода?
- 100. Какие действия необходимо выполнить, чтобы построить комбинационную схему преобразователя кода (например, циклического кода в весовой код 11133)?
- 101. Дайте контактную интерпретацию булевых функций.
- 102. Какие логические операции соответствуют последовательному и параллельному соединениям контактов?
- 103. Постройте контактную структуру на основе заданной булевой функции.
- 104. Приведите пример мостиковой контактной структуры.
- 105. Изобразите схему включения трёхфазного асинхронного двигателя применяя реле и кнопки «Пуск» и «Стоп».
- 106. Изобразите схему включения реверсивного трёхфазного асинхронного двигателя применяя реле, две пусковые кнопки «Пуск» и одну кнопку «Стоп».
- 107. Что такое многотактный автомат и в чём его отличие от комбинационной схемы?
- 108. Изобразите логическую схему простейшего триггера типа RS на элементах Шеффера.
- 109. Какое состояние входов R и S триггера типа RS, построенного на элементах Шеффера, является запрещённым?
- 110. Какую главную роль играют RS-триггеры в комбинационных схемах?
- 111. Какие по форме импульсы применяются многотактных автоматах?
- 112. В чём отличие синхронного принципа работы автомата от асинхронного?
- 113. Приведите пример асинхронного автомата, построенного на триггерах типа T.
- 114. В каких случаях Т-триггер меняет свои состояния?
- 115. Найдите последовательность состояний, которые заданный асинхронный автомат проходит под действием входных импульсов.
- 116. Что такое *JK*-триггер?
- 117. При каких условиях ЈК-триггер меняет свои состояния под действием синхроимпульсов?
- 118. Постройте синхронный автомат на *JK*-триггерах, меняющий свои состояния в заданной последовательности. Изобразите его логическую схему.

5. Комбинаторика

- 117. Сформулируйте основное правило комбинаторики (правило произведения).
- 118. Сформулируйте правило суммы.
- 119. Запишите формулы для основных комбинаторных конфигураций: перестановок, размещений,

- сочетаний с повторениями и без повторений.
- 120. Дайте формулировку и решение задачи о разбиении множества на несколько непересекающихся подмножеств.
- 121. Приведите решение задачи из теории вероятностей на тему урновой модели.
- 122. Сформулируйте задачу о покрытии множеств на примере минимизации булевых формул.
- 123. Что такое латинские прямоугольники и латинские квадраты?

6. Теория графов

- 127. Охарактеризуйте такие понятия, как граф, надграф, подграф, частичный граф.
- 128. Что такое смежность, инцидентность, степень вершины?
- 129. Какие графы называются однородными?
- 130. Какие графы называются полными?
- 131. Что такое дополнение графа?
- 132. Что такое изоморфизм?
- 133. Какие вершины называются смежными? Какие рёбра называются смежными?
- 134. Что такое инцидентность?
- 135. Как построить матрицу смежности? Приведите примеры.
- 136. Как строится матрица инцидентности?
- 137. Приведите понятия маршрута, цепи, простой цепи, простого цикла в графе.
- 138. Какие графы называются связными?
- 139. Что такое степень связности графа?
- 140. Как найти все простые цепи, соединяющие две вершины графа?
- 141. Какие графы называются эйлеровыми и полуэйлеровыми?
- 142. Что такое уникурсальная линия?
- 143. Какие графы называются гамильтоновыми?
- 144. Приведите две формулировки задачи о коммивояжёре.
- 145. Какие графы называются двудольными?
- 146. Что такое полный двудольный граф?
- 147. Какой граф называют плоским?
- 148. Какие графы называются планарными?
- 149. Сформулируйте теорему Эйлера о плоских графах.
- 150. Дайте определение клики в графе.
- 151. Как построить граф, двойственный по отношению к заданному?
- 152. Какие графы называются деревьями и какие лесом?
- 153. Как закодировать дерево методом Пруфера, как декодировать? Приведите примеры кодирования и декодирования деревьев.
- 154. Какие графы называются ориентированными (орграфами)?
- 155. Как определяется степень вершины орграфа?
- 156. Что такое сильная и слабая связность орграфа?
- 157. Сколько существует полных орграфов на n вершинах?
- 158. Что такое транспортная сеть?
- 159. Как определить максимальную пропускную способность транспортной сети?

Темы для тестирования:

- 1) Операции над множествами;
- 2) Минимизация булевых формул;
- 3) Многотактные автоматы (автоматы с памятью);
- 4) Применение формул комбинаторики;
- 5) Теория графов.

Индивидуальные задания:

- 1) алгебра Жегалкина
- 2) дифференцирование и интегрирование булевых формул;
- 3) булевы уравнения;
- 4) Анализ асинхронных автоматов, построенных на Т-триггерах;
- 5) Решение комбинаторных задач;
- 6) Поиск в графах простых цепей, соединяющих две вершины.

4 Методические материалы.

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы: методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе согласно пункту12 рабочей программы.

Основная литература.

1.Шевелев, Ю.П. Дискретная математика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2016. — 592 с. — Режим доступа:

http://e.lanbook.com/book/71772

Дополнительная литература.

- 1. Глухов, М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов. [Электронный ресурс] / М.М. Глухов, О.А. Козлитин, В.А. Шапошников, А.Б. Шишков. Электрон. дан. СПб. : Лань, 2008. 112 с. Режим доступа: http://e.lanbook.com/book/112
 2. Копылов, В.И. Курс дискретной математики. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2011. 208 с. Режим доступа: http://e.lanbook.com/book/1798
 - Учебно-методические пособия Обязательные учебно-методические пособия

Практические занятия проводятся по учебным пособиям:

Шевелев, Ю.П. Сборник задач по дискретной математике (для практических занятий в группах). [Электронный ресурс] / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев. — Электрон. дан. — СПб. : Лань, 2013. — 528 с. — Режим доступа: http://e.lanbook.com/book/5251

Задания на контрольные работы и индивидуальные задания приведены в каждом из следующих учебных пособий:

Шевелев, Ю.П. Дискретная математика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2016. — 592 с. (рекомендовано для самостоятельной работы) — Режим доступа: http://e.lanbook.com/book/71772

Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.