МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	У'	ТВЕРЖДАЮ
Дирек	тор дег	партамента образования
		П. В. Сенченко
«	>>	2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Прикладная математическая статистика

Уровень образования: высшее образование - магистратура

Направление подготовки / специальность: **09.04.01 Информатика и вычислительная техника** Направленность (профиль) / специализация: **Автоматизированные системы обработки**

информации и управления в экономике

Форма обучения: очная

Факультет: ФСУ, Факультет систем управления

Кафедра: АСУ, Кафедра автоматизированных систем управления

Курс: **1** Семестр: **1**

Учебный план набора 2018 года

Распределение рабочего времени

No	Виды учебной деятельности	1 семестр	Всего	Единицы
1	Лекции	20	20	часов
2	Лабораторные работы	36	36	часов
3	Всего аудиторных занятий	56	56	часов
4	Самостоятельная работа	88	88	часов
5	Всего (без экзамена)	144	144	часов
6	Подготовка и сдача экзамена	36	36	часов
7	Общая трудоемкость	180	180	часов
		5.0	5.0	3.E.

Экзамен: 1 семестр

Рассмотрена	и одо	брена н	на за	аседании	кафедры
протокол №	13	от «_	31_»	10	20 <u>19</u> г.

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа дисциплины составлена с учетом требований федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 09.04.01 Информатика и вычислительная техника, утвержденного 30.10.2014 года, рассмотрена и одобрена на заседании кафедры АСУ «30» августа 2019 г., протокол №10

Разработчик:	
профессор каф. АСУ	А. А. Мицель
Заведующий обеспечивающей каф. АСУ	А. М. Кориков
Рабочая программа дисциплины со	огласована с факультетом и выпускающей кафедрой:
Декан ФСУ	Н.Ю. Салмина
Заведующий выпускающей каф. АСУ	А. М. Кориков
Эксперты:	
Заведующий кафедрой автоматизированных систем управления (АСУ)	А. М. Кориков
Доцент кафедры	
автоматизированных систем управления (АСУ)	А. И. Исакова

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Целью дисциплины является формирование у магистрантов научного представления о вероятностной интерпретации обрабатываемых данных, о понятиях, приемах, математических методах и моделях, предназначенных для организации сбора, стандартной записи, систематизации и обработки статистических данных с целью их удобного представления, интерпретации, получения научных и практических выводов

1.2. Задачи дисциплины

– Основной задачей изучения дисциплины является формирование у студентов теоретических знаний и практических навыков в области обработки статистических данных

2. Место дисциплины в структуре ОПОП

Дисциплина «Прикладная математическая статистика» (Б1.В.ОД.1) относится к блоку 1 (вариативная часть).

Последующими дисциплинами являются: Защита выпускной квалификационной работы, включая подготовку к защите и процедуру защиты, Преддипломная практика.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПК-2 знанием методов научных исследований и владение навыками их проведения;
- ПСК-2 способностью собирать, обрабатывать и интерпретировать данные современных научных исследований;
- ПСК-3 способностью понимать, совершенствовать и применять современный математический аппарат;

В результате изучения дисциплины обучающийся должен:

- знать основные типы распределений вероятностей, используемые в статистическом анализе; методы оценивания параметров распределений случайных величин и случайных процессов; основные методы анализа статистических данных.
- уметь применять методы статистического анализа выборочных данных; интерпретировать результаты статистического анализа и использовать их при построении математических моделей.
- владеть практическими навыками численных расчетов оценок параметров распределений; • навыками дисперсионного, корреляционного и регрессионного анализа статистических данных

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		1 семестр
Аудиторные занятия (всего)	56	56
Лекции	20	20
Лабораторные работы	36	36
Самостоятельная работа (всего)	88	88
Оформление отчетов по лабораторным работам	2	2
Подготовка к лабораторным работам	30	30
Проработка лекционного материала	38	38
Самостоятельное изучение тем (вопросов) теоретической части курса	18	18

Всего (без экзамена)	144	144
Подготовка и сдача экзамена	36	36
Общая трудоемкость, ч	180	180
Зачетные Единицы	5.0	5.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	лек., ч Пек., ч	Лаб. раб., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемы е компетенции
1 Тема 1. Выборка. Эмпирическое распределение Тема 2. Точечные оценки параметров распределений вероятностей Тема 3. Интервальные оценки параметров распределений	6	6	18	30	ПК-2, ПСК-2, ПСК-3
2 Тема 4. Методы анализа законов распределения вероятностей случайных величин Тема 5. Проверка гипотез о значениях параметров распределений	6	6	18	30	ПК-2, ПСК-2, ПСК-3
3 Тема 6. Дисперсионный анализ зависимостей Тема 7. Корреляционный анализ	6	18	36	60	ПК-2, ПСК-2, ПСК-3
4 Тема 8. Регрессионный анализ	2	6	16	24	ПК-2, ПСК-2, ПСК-3
Итого за семестр	20	36	88	144	
Итого	20	36	88	144	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины по лекциям	Трудоемкость,	Формируемые компетенции		
	1 семестр				
1 Тема 1. Выборка. Эмпирическое распределение Тема 2. Точечные оценки параметров распределений вероятностей Тема 3.	Генеральная и выборочная совокупности. Понятие выборки. Эмпирическая функция распределения. Полигон частот, гистограмма. Числовые характеристики распределений. Точечные и интервальные оценки и их свойства: несмещенность, состоятельность и эффективность. Методы нахождения точечных	6	ПК-2		

Интервальные оценки параметров распределений	оценок: метод моментов, метод максимального правдоподобия, метод наименьших квадратов. Оценки параметров нормального, экспоненциального, равномерного и биномиального распределений. Примеры точечных и интервальных оценок. Планирование экспериментов для оценки параметров распределений: нормальное распределение; экспоненциальное распределение; биномиальное распределение. ПримерыИнтервальные оценки: оценка параметров нормального, экспоненциального и биномиального распределений. Примеры интервальных оценок. Интервальные оценки при неизвестном законе распределения: оценки для центра распределения; оценка рассеяния распределения. Итого	6	
2 Тема 4. Методы	Общие понятия. Общие критерии согласия:	6	ПК-2
анализа законов распределения вероятностей случайных величин Тема 5. Проверка гипотез о значениях параметров распределений	критерии, основанные на сравнении теоретической плотности распределения и эмпирической гистограммой; критерии, основанные на сравнении теоретической и эмпирической функций распределения вероятностей. Критерии нормальности распределения. Критерии проверки экспоненциальности распределения. Общие сведения. Последовательные методы проверки гипотез о значениях параметров распределений. Проверка гипотезы о параметрах нормального распределения: проверка гипотезы о значении среднего; проверка гипотезы о значении дисперсии. Проверка гипотезы о параметре экспоненциального распределения. Проверка гипотезы о параметре ответные биномиального распределения. Примеры Итого	6	
3 Тема 6. Дисперсионный анализ зависимостей Тема 7. Корреляционный анализ	Основные положения. Однофакторный анализ: однофакторный дисперсионный анализ; непараметрические методы однофакторного анализа (Однофакторный непараметрический анализ на основе критерия Краскела-Уоллеса (произвольные альтернативы), Однофакторный непараметрический анализ на основе критерия Джонкхиера (альтернативы с упорядочением)). Двухфакторный анализ: двухфакторный дисперсионный анализ; двухфакторный непараметрический анализ (Двухфакторный непараметрический анализ по критерию Фридмана (произвольные альтернативы), Двухфакторный непараметрический анализ по критерию Пейджа (альтернативы с упорядочением)). ПримерыВычисление	6	ПК-2, ПСК-2, ПСК-3

	параметрических коэффициентов корреляции. Вычисление непараметрических коэффициентов корреляции: коэффициент ранговой корреляции Спирмана; коэффициент ранговой корреляции Кендалла; коэффициент конкордации. Примеры		
	Итого	6	
4 Тема 8. Регрессионный анализ	Регрессионная, скедастическая, клитическая и синагическая зависимости функции распределения случайной величины от . Построение модели регрессии. Оценка адекватности регрессии: доверительный интервал для уравнения регрессии. Оценка дисперсии коэффициентов регрессии и доверительных интервалов. Пример построения уравнения регрессии	2	ПК-2, ПСК-2, ПСК-3
	Итого	2	
Итого за семестр		20	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин				
	1	2	3	4	
Последующие дисциплины					
1 Защита выпускной квалификационной работы, включая подготовку к защите и процедуру защиты	+	+	+		
2 Преддипломная практика	+	+	+		

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

И		Виды занятий		
Компетенции	Лек.	Лаб. раб.	Сам. раб.	Формы контроля
ПК-2	+	+	+	Экзамен, Коллоквиум, Отчет по лабораторной работе, Тест
ПСК-2	+	+	+	Экзамен, Коллоквиум, Отчет по лабораторной работе, Тест

ПСК-3	+	+	+	Экзамен, Коллоквиум, Отчет по
				лабораторной работе, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

таолица 7.1 – паименовал	ние лаоораторных раоот		
Названия разделов	Наименование лабораторных работ	Трудоемкость,	Формируемые компетенции
	1 семестр		
1 Тема 1. Выборка. Эмпирическое	Генерация случайных чисел с заданным законом распределения	6	ПК-2, ПСК-2,
распределение Тема 2. Точечные оценки параметров распределений вероятностей Тема 3. Интервальные оценки параметров распределений	Итого	6	ПСК-3
2 Тема 4. Методы анализа законов	Оценка закона распределения на основе выборочных данных	6	ПК-2, ПСК-2,
распределения вероятностей случайных величин Тема 5. Проверка гипотез о значениях параметров распределений	Итого	6	ПСК-3
3 Тема 6. Дисперсионный анализ зависимостей Тема 7.	Дисперсионный анализ случайных данных Корреляционный анализ случайных данных	18	ПК-2, ПСК-2, ПСК-3
Корреляционный анализ	Итого	18	
4 Тема 8. Регрессионный анализ	Построение модели парной регрессииОценка погрешности регрессииОценка адекватности модели	6	ПК-2, ПСК-2, ПСК-3
	Итого	6	
Итого за семестр		36	
	•		

8. Практические занятия (семинары)

Не предусмотрено РУП.

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Таолица ул Виды самос	тоятельной расоты, трудоск	постын		ине компетенции
Названия разделов	Виды самостоятельной работы	Трудоемкость, ч	Формируемые компетенции	Формы контроля
	1 семест	p		
1 Тема 1. Выборка. Эмпирическое распределение Тема 2. Точечные оценки	Самостоятельное изучение тем (вопросов) теоретической части курса	4	ПК-2, ПСК-2, ПСК-3	Коллоквиум, Отчет по лабораторной работе, Тест, Экзамен
параметров распределений вероятностей Тема 3.	Проработка лекционного материала	8		
Интервальные оценки параметров	Подготовка к лабораторным работам	6		
распределений	Итого	18		
2 Тема 4. Методы анализа законов распределения вероятностей случайных	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ПК-2, ПСК-2, ПСК-3	Коллоквиум, Отчет по лабораторной работе, Тест, Экзамен
величин Тема 5. Проверка гипотез о значениях параметров	Проработка лекционного материала	6		
распределений	Подготовка к лабораторным работам	6		
	Итого	18		
3 Тема 6. Дисперсионный анализ зависимостей Тема 7. Корреляционный анализ	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ПК-2, ПСК-2, ПСК-3	Коллоквиум, Отчет по лабораторной работе, Тест, Экзамен
	Проработка лекционного материала	12		
	Подготовка к лабораторным работам	18		
	Итого	36		
4 Тема 8. Регрессионный анализ	Самостоятельное изучение тем (вопросов) теоретической части курса	2	ПК-2, ПСК-2, ПСК-3	Коллоквиум, Отчет по лабораторной работе, Тест, Экзамен
	Проработка лекционного материала	12		
	Оформление отчетов по лабораторным работам	2		
	Итого	16		
Итого за семестр				

	Подготовка и сдача экзамена	36	Экзамен
Итого		124	

10. Курсовая работа (проект)

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на	Всего за семестр
	начала семестра	мсжду ГКТ и 2КТ	конец семестра	
	1	семестр		
Коллоквиум	5	8	8	21
Отчет по лабораторной работе	5	5	20	30
Тест	6	7	6	19
Итого максимум за	16	20	34	70
период				
Экзамен				30
Нарастающим итогом	16	36	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (удовлетворительно)
2 (AMO DI OTRO DA MARIO MA VA) (DOMESTO)	65 - 69	р (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не	Ниже 60 баллов	F (неудовлетворительно)

зачтено)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Прикладная математическая статистика: Учебное пособие / Мицель А. А. - 2019. 113 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/lecturer/publications/9151/download, дата обращения: 12.11.2019.

12.2. Дополнительная литература

1. Справочник по прикладной статистике. Т. 2. Пер. с англ. / Под ред. Э. Ллойда, У. Ледермана, Тюрина Ю.Н. — М.: Финансы и статистика, 1990. (8 экз. в библиотеке ТУСУР) (наличие в библиотеке ТУСУР - 8 экз.)

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Прикладная математическая статистика: Методические указания по выполнению самостоятельной работы магистрантов направления 09.04.01 «Информатика и вычислительная техника» / Мицель А. А. 2019. 10 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/lecturer/publications/9154/download, дата обращения: 12.11.2019.
- 2. Прикладная математическая статистика: Лабораторный практикум / Мицель А. А. 2016. 72 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/lecturer/publications/9152/download, дата обращения: 12.11.2019.
- 3. Прикладная математическая статистика: Практические работы / Мицель А. А. 2016. 81 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/lecturer/publications/9153/download, дата обращения: 12.11.2019.

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

- 2. http://www.intuit.ru/department/se/devis/
- 4. http://www.mathnet.ru.ru/ общероссийский математический портал
- 5. http://onlinelibrary.wiley.com научные журналы издательства Wiley&Sons
- 6. http://www.sciencedirect.com/ научные журналы издательства Elsevier

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются

демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для лабораторных работ

Учебная вычислительная лаборатория / Лаборатория ГПО "Алгоритм"

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 439 ауд.

Описание имеющегося оборудования:

- Рабочие станции Intel Celeron 1.7 (10 шт.);
- Проектор Acer X125H DLP;
- Экран проектора;
- Видеокамера (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- FreeMat
- LibreOffice
- Microsoft Excel Viewer
- Microsoft PowerPoint Viewer
- Scilab

13.1.3. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания

для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

	T .	1	
1	Выборка – это:	a)	множество $\{x_1, x_2,, x_n\}$ отдельных
			значений случайной величины ξ,
			полученных в серии из <i>п</i> независимых
			экспериментов (наблюдений)
			. , ,
		b)	бесконечное множество $\{x_1, x_2,, x_n,\}$
			отдельных значений случайной величины ξ ,
			полученных в серии из бесконечного числа
			независимых экспериментов (наблюдений)
		c)	ограниченное множество отдельных
			значений случайной величины 5,
			полученных в серии из n зависимых
			экспериментов (наблюдений)
		d)	бесконечное множество $\{x_1, x_2,, x_n,\}$
			отдельных значений случайной величины ξ ,
			полученных в серии из бесконечного числа
			зависимых экспериментов (наблюдений)
2	Статистический ряд	a)	функцию распределения вероятностей
	относительных частот		дискретной случайной величины
	оценивает	b)	ряд распределения вероятностей дискретной
			случайной величины
			плотность распределения вероятностей
			непрерывной случайной величины
			функцию распределения вероятностей
			непрерывной случайной величины
3	Гистограмма частот	a)	
	оценивает:		дискретной случайной величины
		b)	вариационный ряд непрерывной случайной
			величины
		c)	плотность распределения дискретной
			случайной величины
		d)	плотность распределения непрерывной
			случайной величины

4	Точечной оценкой параметра θ по выборочным данным является:	а) некоторый функционал $\theta^* = \varphi(x_1, x_2,, x_n)$, позволяющий получить наилучшую оценку в принятых критериях
		b) некоторый функционал $\theta^* = \phi(x_1, x_2,, x_n)$, позволяющий получить среднюю оценку в принятых критериях
		с) среднее значение выборочных данных
		d) средне квадратическое отклонение
		выборочных данных
5	Оценка θ^* параметра θ	a) при $n \to \infty$, $\theta^* \to \theta$
	является состоятельной, несмещенной,	b) $M(\theta^*) \neq \theta$
	эффективной и достаточной, если:	c) оценка $ heta^*$ извлекает максимальную информацию из выборки
		d) $D(\theta^*) = \max$
6	Под интервальной оценкой параметра θ понимается	а) интервал, границы которого a_i^* и a_a^* являются функционалами от выборочных значений случайной величины, и который с заданной вероятностью α содержит оцениваемый параметр: $P\{a_i^* < \theta < a_a^*\} = \alpha$
		b) интервал, границы которого a_i^* и a_a^* являются средними значениями от выборочных данных случайной величины, и который с заданной вероятностью α содержит оцениваемый $P\{a_i^* < \theta < a_a^*\} = \alpha$
		с) интервал, границы которого a_i^* a_a^* являются средне квадратическими значениями от выборочных данных случайной величины, и который с заданной вероятностью α содержит оцениваемый параметр: $P\{a_i^* < \theta < a_a^*\} = \alpha$
		d) интервал, границы которого a_i и $a_{\hat{a}}$ являются средними значениями от выборочных данных случайной величины
7	Для вычисления точечных	а) либо метод максимального правдоподобия
	оценок используют:	b) либо метод моментов
		с) либо метод наименьших квадратов
		d) все перечисленные методы
8	Общие критерии согласия	а) критерии, основанные на изучении разницы
	– это:	между теоретической плотностью распределения и эмпирической гистограммой
		b) критерии, основанные на расстоянии между
		теоретической и эмпирической функциями

$ \begin{array}{c} \textbf{C}) \text{ корреляционно-регрессионных срязей между } \\ \textbf{S} \\ Критерий (Пирсона) для простой гипотезы вычисляется по формуле: 3десь n- объём выборки; p_i- теоретическая вероятность попадания случайной величины в i -й интервал при условии истинности H_0; n_i- число элементов выборки попадания случайной величины i -й интервал при условии истинности H_0; n_i- оценка вероятности попадания случайной величины i -й интервал при условии истинности H_0; n_i- оценка вероятности попадания случайной величины i -й интервал при условии истинности H_0; n_i- оценка вероятности попадания случайной величины i -й интервал при условии истинности H_0; n_i- число элементов выборки попавших i -ый интервал при условии истинности H_0; n_i- число элементов выборки попавших i -ый интервал при условии истинности H_0; n_i- число элементов выборки попавших i -ый интервал при условии истинности H_0; n_i- число элементов выборки попавших i -ый интервал при условии истинности H_0; n_i- число элементов выборки попавших i -ый интервал i -in интервал при условии истинности i -in интервал при условии истинносты i -in интервал при условии истинносты i -in $				POOLED HOUSE DOPOGESTO OTOM
оспованные на изучении корредяционных регрессионных связей между эмпирическими и теоретическими порядковыми статистиками d) все перечисленные критерии $\rho(x) = \sum_{i=1}^{m} \frac{(n_i - n_i p_i)^2}{n_i p_i}$ $\rho(x) $			2)	распределения вероятностей
Регрессионных связей между эмпирическими и торядковыми статистиками и все перечисленные критерии Регрессионных связей между эмпирическими и торядковыми статистиками и все перечисленные критерии $\rho(x) = \sum_{i=1}^{m} \frac{(n_i - n_i p_i)^2}{n_i p_i}$ $\rho(x) = \sum_{i=1}^{m} \frac{(n_i - n_i p_i)^2}{np_i}$ $\rho(x) = \sum_{i=1}^{m} \frac{(n_i - n_i p_i)^2}{$			(3)	
омпирическими и теоретическими порядковыми статистиками ока сперечисленные криттерии ока спере краттерии ока спере к о				· · · · · · · · · · · · · · · · · · ·
Порядковыми статистиками Порядковыми Порядковыми статистиками Порядковыми Порядковыми По				• •
Овет перечисленные критерии Овет перечисленные критерии Овет перечисленные критерии Овет перечисленные критерии Овет простой гипотезы вычисляется по формуле: здесь n — объём выборки: p_i — теоретическая вероятность попадания случайной величины в i — интервал при условии истипности H_0 ; p_i — опъем выборки попавних в i — ый интервал при условии истипотезы вычисляется по формуле: здесь n — объём выборки; p_i^* — опенка вероятности попадания случайной величины в i — й интервал при условии истинности H_0 ; p_i^* — опенка вероятности попадания случайной величины в i — й интервал при условии истинности H_0 ; p_i^* — опенка вероятности попадания случайной величины в i — й интервал при условии истинности H_0 ; p_i^* — опенка вероятности на выборки попавних в i — ый интервал при условии истинности H_0 ; p_i^* — опенка вероятности на выборки попавних в i — ый интервал при условии истинности H_0 ; p_i^* — опенка вероятности на выборки попавних в i — ый интервал при условии истинности H_0 ; p_i^* — опенка вероятности на выборки попавних в i — ый интервал при условии истинности H_0 ; p_i^* — опенка вероятности на выборки попавних в i — ый интервал при условии истинности H_0 ; p_i^* — опенка вероятности p_i^* —				-
9 Критерий (Пирсопа) для простой гинотезы вычисляется по формуле: здесь n – объём выборки; p_i — теоретическая вероятность попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попадания случайной величины в i -ый интервал (Пирсона) для сложной гинотезы вычисляется по формуле: здесь n – объём выборки; p_i^* – оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности h_0 ; h_0 -			1)	•
простой гипотезы вычисляется по формуле: здесь n — объём выборки; p_i — теоретическая вероятносты попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал вычисляется по формуле: здесь n — объём выборки; p_i^* — оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности i -		72	a)	все перечисленные критерии
здесь n – объём выборки; p_i — теоретическая вероятность попадания случайной величины в i -й интервал при условии истипности H_0 ; n_i - число элементов выборки попавших в i -ый интервал i - оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; $p(x) = \sum_{i=1}^m \frac{(n_i - np_i)^2}{np_i}$ $p(x) = \sum_{i=1}^m \frac{(n_i - np_i)^2}{np_i^2}$ $p(x) = \sum_{i=1}^m (n_i - np_i)^$	9	` - /		$\sum_{i=1}^{m} (n_i - n_i p_i)^2$
здесь n – объём выборки; p_i — теоретическая вероятность попадания случайной величины в i -й интервал при условии истипности H_0 ; n_i - число элементов выборки попавших в i -ый интервал i - оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; $p(x) = \sum_{i=1}^m \frac{(n_i - np_i)^2}{np_i}$ $p(x) = \sum_{i=1}^m \frac{(n_i - np_i)^2}{np_i^2}$ $p(x) = \sum_{i=1}^m (n_i - np_i)^$		-		$\rho(x) = \sum_{i=1}^{n} \frac{(i-i)^{n}}{(i-i)^{n}}$
по критерий (Пирсона) для сложной гипотезы выборки попавших в i -ый интервал при условии истинности H_0 ; $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i\right)}{np_i}$ $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i\right)^2}{np_i}$ ρ		вычисляется по формуле:	a)	$n_i = n_i p_i$
по критерий (Пирсона) для сложной гипотезы выборки попавших в i -ый интервал при условии истинности H_0 ; $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i\right)}{np_i}$ $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i\right)^2}{np_i}$ ρ		здесь n – объём выборки;		$\sum_{i=1}^{m} (n_i - np_i)^2$
одучайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 10 Критерий (Пирсона) для сложной гипотезы вычисляется по формуле: здесь n - объём выборки; p_i^* - оцепка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал H_0 : θ = θ_0 ; H_1 : θ = θ — θ		п. теопетинеская		$\rho(x) = \sum_{i=1}^{n} \frac{(x_i - x_{i,i})^n}{n!}$
пероления величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 10 Критерий (Пирсона) для сложной гипотезы вычисляется по формуле: здесь n - объём выборки; p_i^* - оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал m_i - число элементов выборки пипотезы о значении параметра m_i -		1 ~ -	b)	$\overline{l_{i=1}}$ np_i
истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $P(x) = \sum_{i=1}^m \frac{\left(n - n_i p_i\right)^2}{np_i}$ $P(x) = \sum_{i=1}^m \left(n - n_i p_i\right$		=		$\sum_{n=1}^{\infty} (n - np)$
истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $P(x) = \sum_{i=1}^m \frac{\left(n - n_i p_i\right)^2}{np_i}$ $P(x) = \sum_{i=1}^m \left(n - n_i p_i\right$		•		$\rho(x) = \sum_{i=1}^{n} \frac{(x_i - Y_i)^2}{2}$
$ \begin{array}{c} n_i - число элементов \\ выборки попавших в i -ый интервал \\ по критерий (Пирсона) для сложной гипотезы вычисляется по формуле: $			c)	$\overline{i}=1$ np_i
выборки попавших в i -ый интервал 10 Критерий (Пирсона) для сложной гипотезы вычисляется по формуле: здесь n - объём выборки; p_i^* - оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0:\theta=\theta_0; H_1:\theta=\theta_0; H_1:\theta=\theta_0$ а) принять гипотезу H0 оргиний (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 10 Критерий (Пирсона) для i -ый i -ий i - i		истинности H_0 ,		$\frac{m}{n}(n-n,n)^2$
выборки попавших в i -ый интервал 10 Критерий (Пирсона) для сложной гипотезы вычисляется по формуле: здесь n - объём выборки; p_i^* - оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0:\theta=\theta_0; H_1:\theta=0$ для опенки связей между статистическими совокупностями случайных величин используются методы: 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 (0) 0) 0 0 (0) 0 0 (0) 0 0 (0 0) 0 0 (0		<i>n</i> число элементов		$\rho(x) = \sum_{i=1}^{n} \frac{(n^{i} n_{i} p_{i})}{n^{i}}$
интервал 10 Критерий (Пирсона) для сложной гипотезы вычисляется по формуле: здесь n – объём выборки; p_i^* – оценка вероятности попадания случайных величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0; \ H_3: \theta = \theta_$		•	d)	np_i
10 Критерий (Пирсона) для сложной гипотезы вычисляется по формуле: здесь n – объём выборки; p_i^* – оценка вероятности попадания случайной величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i^*\right)^2}{np_i^*}$ ρ		_		
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i^*\right)^2}{np_i^*}$ $\rho(x) = \sum_{i=1}^$		-		
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0$ а) принять гипотезу H_0 отклонить гипотезу H_0 оринять гипотезу H_0 не принимать никаких решений $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0; \ H_3: \theta = \theta_0; $	10	` - /		$\sum_{i=1}^{m} (n_i - np_i^*)$
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0$ а) принять гипотезу H_0 отклонить гипотезу H_0 оринять гипотезу H_0 не принимать никаких решений $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0; \ H_3: \theta = \theta_0; $				$\rho(x) = \sum_{i=1}^{k} \frac{(x_i - x_i)^2}{x_i}$
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i^*\right)^2}{np_i^*}$ $\rho(x) = \sum_{i=1}^$		вычисляется по формуле:	a)	$\overline{i}=1$ np_i
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i^*\right)^2}{np_i^*}$ $\rho(x) = \sum_{i=1}^$		здесь n – объём выборки;		$m\left(n-n n^*\right)^2$
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал $\rho(x) = \sum_{i=1}^m \frac{\left(n_i - np_i^*\right)^2}{np_i^*}$ $\rho(x) = \sum_{i=1}^$		*		$\rho(x) = \sum \frac{(n - n_i p_i)}{x}$
величины в i -й интервал при условии истинности H_0 ; n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0$ а) принять гипотезу H_0 отклонить гипотезу H_0 организать гипотезу H_0 не принимать никаких решений $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0; \ H_3: \theta = \theta_0$			b)	np_i^*
n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0; \ H_3: \theta = \theta_$		I ~		* (*)2
n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_1: \theta = \theta_0; \ H_2: \theta = \theta_0; \ H_3: \theta = \theta_$		_		$o(x) = \sum_{i=1}^{m} \frac{(n_i - np_i)}{(n_i - np_i)}$
n_i - число элементов выборки попавших в i -ый интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; \ H_1: \theta = \theta_0$ 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 13 $n_i - v_i = v_$			2)	$p(w) = \sum_{i=1}^{\infty} np_i^*$
интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; H_1: \theta = \theta_0$ до принять гипотезу Н0 предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 13 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 14 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 15 Для оценки связей между статистическими случайных величин используются методы: 16 Для оценки связей между статистическими случайных величин используются методы: 17 Для оценки связей между статистическими случайных величин используются методы: 18 Для оценки связей между статистическими случайных величин используются методы: 2 Для оценки связей между статистическими случайных величин используются методы: 3 Принять гипотезу Н0 5 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н1 6 Отклони		H_0 ;	C)	
интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; H_1: \theta = \theta_0$ до принять гипотезу Н0 предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 13 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 14 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 15 Для оценки связей между статистическими случайных величин используются методы: 16 Для оценки связей между статистическими случайных величин используются методы: 17 Для оценки связей между статистическими случайных величин используются методы: 18 Для оценки связей между статистическими случайных величин используются методы: 2 Для оценки связей между статистическими случайных величин используются методы: 3 Принять гипотезу Н0 5 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н0 6 Отклонить гипотезу Н1 6 Отклонить гипотезу Н1 6 Отклони		n число элементов		$\sum_{i=1}^{m} (n_i - n_i p_i)$
интервал 11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; H_1: \theta = \theta_0$ до не принимать никаких решений е) продолжить наблюдения предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 13 Для оценки связей между статистическими совокупностями совокупностями совокупностями случайных величин используются методы: 14 Для оценки связей между статистическими совокупностями совокупностями совокупностями случайных величин е) корреляционного анализа е) корреляционного анализа		· •	•	$p(x) - \sum_{i=1}^{\infty} \frac{n_i n_i^*}{n_i n_i^*}$
11 Метод последовательной проверки гипотезы о значении параметра $H_0: \theta = \theta_0; H_1: \theta = \theta_0; H_1:$		1	d)	$i=1$ P_iP_i
проверки гипотезы о значении параметра $H_0: \theta = \theta_0; H_1: \theta = \theta_0$ д) не принимать никаких решений е) продолжить наблюдения предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 12 (С) принять гипотезу Н1 и гипотезу Н0 (с) продолжить наблюдения (с) п		1		
значении параметра $H_0: \theta = \theta_0; H_1: \theta = \theta_0$ д) не принимать никаких решений е) продолжить наблюдения предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 2 для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 3 принять гипотезу H1 и гипотезу H0 не принимать никаких решений е) продолжить наблюдения 4 а дисперсионного анализа 5 с принять гипотезу H1 и гипотезу H0 не принимать никаких решений е) продолжить наблюдения 6 а дисперсионного анализа 6 а дисперсионного анализа 6 а математического анализа 6 е корреляционного анализа	11			
$H_0: \theta = \theta_0; \ H_1: \theta = egin{array}{c ccccccccccccccccccccccccccccccccccc$, and the second
е) продолжить наблюдения предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 12 (Спользуются методы: 13 (Спользуются методы: 14 (Спользуются методы: 15 (Спородолжить наблюдения а) продолжить наблюдения а) дисперсионного анализа а) дисперсионного анализа а) дисперсионного анализа а) дискриминационного анализа а) математического анализа				
предполагает на каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 12 Для оценки связей между а) дисперсионного анализа 13 дисперсионного анализа 14 дисперсионного анализа 15 дискриминационного анализа 16 математического анализа 17 е) корреляционного анализа		$H_0: \theta = \theta_0; H_1: \theta =$	θ_1 d)	1 1
каждой стадии наблюдений (эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: 2 Для оценки связей между а) дисперсионного анализа b) дискриминационного анализа совокупностями с) регрессионного анализа случайных величин используются методы: 2 Корреляционного анализа			e)	продолжить наблюдения
(эксперимента) принятие одного из возможных решений: 12 Для оценки связей между статистическими совокупностями совокупностями случайных величин используются методы: (эксперимента) принятие одного из возможных везиможных решений: (эксперимента) принятие одного из возможных решений: (а) дисперсионного анализа (а) математического анализа (а) математического анализа (а) математического анализа (а) математического анализа		предполагает на		
одного из возможных решений: 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 2 для оценки связей между а) дисперсионного анализа 3 дисперсионного анализа 4 дисперсионного анализа 5 регрессионного анализа 6 корреляционного анализа		каждой стадии наблюдений		
решений: 12 Для оценки связей между статистическими совокупностями случайных величин используются методы: 2 Для оценки связей между а) дисперсионного анализа 3 дисперсионного анализа 4 математического анализа 6 корреляционного анализа		(эксперимента) принятие		
12 Для оценки связей между статистическими b) дискриминационного анализа совокупностями cлучайных величин используются методы: a) дисперсионного анализа b) дискриминационного анализа c) регрессионного анализа d) математического анализа e) корреляционного анализа				
статистическими b) дискриминационного анализа совокупностями cорегрессионного анализа d) математического анализа используются методы: e) корреляционного анализа		*		
совокупностями с) регрессионного анализа случайных величин d) математического анализа е) корреляционного анализа	12	Для оценки связей между	a)	дисперсионного анализа
случайных величин d) математического анализа e) корреляционного анализа		статистическими	b)	дискриминационного анализа
используются методы: е) корреляционного анализа		1	c)	регрессионного анализа
7 11			d)	математического анализа
f) комплексного анализа		используются методы:	e)	корреляционного анализа
1) ROMINICACITO UNUMBER			f)	комплексного анализа
13 Параметрический а) наблюдаемые величины распределены по	13	Параметрический	a)	наблюдаемые величины распределены по

применяют в случае, когда: b) наблюдаемые величины распределены по заранее неизвестному закону c) наблюдаемые величины носят качественный характер d) паблюдаемые величины носят качественный дисперсионный анализ применяют в случае, когда: a) наблюдаемые величины носят качественный характер d) наблюдаемые величины носят качественный характер d) наблюдаемые величины не подчиняются нормальному закону d) наблюдаемые величины не подчиняются нормальному закону d) наблюдаемые величины не подчиняются нормальному закону d) наблюдаемые величины посят качественный характер d) наблюдаемые величины посят качественый характер d) наблюдаемые величины посят качественный характер			
14		дисперсионный анализ	, ,
14 Непараметрический дисперсионный занализ применяют в случае, когда: 15 Двухфакторный диализ применяют в случае, когда: 15 Двухфакторный дипереспонный анализ применяют в случае, когда: 16 Коэффициент корреляции применяют в случае, когда: 16 Коэффициент корреляции присперсионный дарактер 16 Коэффициент корреляции присона вычисляется по формуле: 3,2ec		применяют в случае, когда:	b) наблюдаемые величины распределены по
14 Непараметрический дисперенопный анализ применяют в случае, когда: 15 Двухфакторный дисперенопный анализ применяют в случае, когда: 15 Двухфакторный дисперенопный анализ применяют в случае, когда: 16 Коэффициент корреляции Пирсона вычисляется по формуле: $3 \cdot 3 $			заранее неизвестному закону
14 Непараметрический дисперсионный анализ применяют в случас, когда: 15 Двухфакторный дисперсионный анализ применяют в случае, когда: 15 Двухфакторный дисперсионный анализ применяют в случае, когда: 16 Двухфакторный дисперсионный анализ применяют в случае, когда: 16 Двухфакторный дисперсионный анализ применяют в случае, когда: 16 Коэффициент корреляции Пирсона вычисляется по формуле: 3/16 съ x_1 — наблюдаемые едичины носят качественный характер 16 Наблюдаемые величины носят качественный характер 17 Наблюдаемые величины носят качественный характер 18 Присона вычисляется по формуле: 3/16 съ x_1 — наблюдаемые случайные величины: x — среднее x — x			с) наблюдаемые величины носят качественный
14 Непараметрический дисперсионный анализ применяют в случае, когда: 15 Двухфакторный дисперсионный анализ применяют в случае, когда: 16 Коэффициент корреляции Пирсона вычисляется по формуле: 3			характер
14 Непараметрический дисперсионный анализ применяют в случае, когда: 15 Двухфакторный дисперсионный анализ применяют в случае, когда: 16 Коэффициент корреляции Пирсона вычисляется по формуле: 3			d) наблюдаемые величины распределены по
14 Непараметрический дисперсионный анализ применяют в случае, когда: 2 1 1 1 1 1 1 1 1 1			
Применяют в случае, когда: Применяют в	14	Непараметрический	
врименяют в случае, когда: b) наблюдаемые величины распределены по закону Фишера c) наблюдаемые величины носят качественный характер d) наблюдаемые величины носят качественный дисперсионный анализ применяют в случае, когда: d) наблюдаемые величины носят качественный и количественный характер h) наблюдаемые величины носят качественный и количественный характер c) наблюдаемые величины носят качественный характер a) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным e			· ·
$\frac{3акону Фишера}{c} = \frac{0}{\text{наблюдаемые величины носят качественный характер}}{d} = \frac{1}{\text{маблюдаемые величины носят качественный характер}}{d} = \frac{1}{\text{маблюдаемые величины носят качественный и количественный характер}}{d} = \frac{1}{\text{маблюдаемые величины носят качественный и количественный характер}}{d} = \frac{1}{\text{маблюдаемые величины носят качественный характер}}{d} = \frac{1}{маблюдаемые качественный ха$		_	* *
$ c) \ \ \ \ \ \ \ \ \ \ \ \ \ $			1 1 1
Тарактер Паблюдаемые величины не подчиняются нормальному закону Паблюдаемые величины носят качественный и количественный характер Паблюдаемые величины носят качественный характер Паблюдаемые величин			
Вирхфакторный дисперсионный анализ примсияют в случас, когда: а наблюдаемые величины носят качественный и количественный характер b наблюдаемые величины носят качественный характер с наблюдаемые величины носят качественный характер а большой внутригрупповой разброс данных, на фоне которото действие интересующего нас фактора остаётся незаметным $\overline{x} - \text{среднеe}$ $\overline{x} - \text{среднee}$ $\overline{x} - \text{cpednee}$ $\overline{x} - cped$			
Пормальному закону а) наблюдаемые величины носят качественный и количественный характер наблюдаемые величины носят качественный характер наблюдаемые величины носят качественный характер о) наблюдаемые величины носят качественный характер а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным			• •
15 Двухфакторный дисперсионный анализ применяют в случае, когда: а) наблюдаемые величины носят качественный и количественный характер b) наблюдаемые величины носят количественный характер а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $x = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{$			
и количественный характер в наблюдаемые величины носят качественный характер а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$ $x = \frac{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}{\sum_{i=1}^{n} (x_i - x_i)(y_i - y_i)}$	15	Пружфактории ий	
применяют в случае, когда: b) наблюдаемые величины носят количественный характер c) наблюдаемые величины носят качественный характер a) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})^2}$	13		·
количественный характер с) наблюдаемые величины носят качественный характер а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})\sum_{i=1}^{n} (y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}$		_	• •
с) наблюдаемые величины носят качественный характер а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным 16 Коэффициент корреляции Пирсона вычисляется по формуле:		применяют в случае, когда.	
характер а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным 16 Коэффициент корреляции Пирсона вычисляется по формуле:			• •
а) большой внутригрупповой разброс данных, на фоне которого действие интересующего нас фактора остаётся незаметным $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$			
на фоне которого действие интересующего нас фактора остаётся незаметным 16 Коэффициент корреляции Пирсона вычисляется по формуле:			
нас фактора остаётся незаметным пирсона вычисляется по формуле:			
Коэффициент корреляции Пирсона вычисляется по формуле:			
Пирсона вычисляется по формуле:			нас фактора остаётся незаметным
величины; $\overline{x} - \text{среднее}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $d)$ $r = \frac{\sum_{i=1}^{n} (x_i) (y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $e)$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}}$ $f)$ $f)$	16		$\sum_{n=0}^{\infty} (x_n - x_n)(x_n - x_n)$
величины; $\overline{x} - \text{среднее}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $e) \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $f) \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i)^2}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			$\sum_{i=1}^{n} (x_i - x)(y_i - y)$
величины; $\overline{x} - \text{среднее}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $e) \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $f) \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i)^2}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$		формуле:	$r = \frac{r=1}{r}$
величины; $\overline{x} - \text{среднее}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $e) \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $f) \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i)^2}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$		здесь X_i —	$\left(\sum_{i=1}^{n}\left(x_{i}-\sum_{i=1}^{n}\left(y_{i}-\sum_{i=1}^{n}\right)\right)\right)$
величины; $\overline{x} - \text{среднее}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 (y_i - \overline{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ $e) \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$ $f) \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i)^2}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$		наблюлаемые случайные	$\sqrt{\sum_{i=1}^{N} {x_i \times y \choose i}}$
$r = \frac{1}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}} $ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} $ $r = \frac{\sum_{i=1}^{n} (x_i) (y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} $ $e) \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}} $ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}} $ $f) \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}} $		-	n
$r = \frac{1}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}) \sum_{i=1}^{n} (y_i - \overline{y})}} $ $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} $ $r = \frac{\sum_{i=1}^{n} (x_i) (y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} $ $e) \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}} $ $f) \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}} $		_ `	$\sum (x_i - \overline{x})^2 (y_i - \overline{y})^2$
c) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ d) $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$		х – среднее	$r - \frac{i=1}{i}$
c) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ d) $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$			$n = \frac{n}{n} \left(\frac{n}{n} \right) \left(\frac{n}{n} \right)$
c) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ d) $r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}}$			$\sum (x_i - x) \sum (y_i - y)$
$r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$ f)			$c)$ $\sqrt{\frac{1}{i=1}}$
$r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$ f)			$\sum_{i=1}^{n} (i - 1)(i - 1)$
$r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$ f)			$\sum (x_i - x)(y_i - y)$
$r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$ f)			$r = \frac{i=1}{\sqrt{1 - \frac{i}{2}}}$
$r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$ f)			$\left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$
$r = \frac{\sum_{i=1}^{n} (x_i)(y_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ e) $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$ f)			$\sqrt{\sum_{i=1}^{n} (x_i - x)} \sum_{i=1}^{n} (y_i - y)$
$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			
$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			$\sum_{i=1}^{n} (x_i)(y_i)$
$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			$\sum_{i=1}^{n} (\mathcal{I}_i) (\mathcal{I}_i)$
$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			$r = \frac{1}{\sqrt{n}}$
$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			$\int \sum_{i} (x_i - x)^2 \sum_{i} (y_i - y)^2$
$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} (y_i)^2}}$			$V_{i=1}$
f)			<u> </u>
f)			$\sum (x_i - x)(y_i - y)$
f)			$r = \frac{\overline{i=1}}{1}$
f)			$\left(\sum_{n=1}^{n} \left(x_{n}\right)^{2} \sum_{n=1}^{\infty} \left(x_{n}\right)^{2}\right)$
f)			$\sqrt{\sum_{i}(x_i)} \sum_{i}(y_i)$
	1=	TC 1.1	f)
17 Коэффициент конкордации а) для определения тесноты связи между	17		' ' '
применяют независимыми случайными величинами		применяют	независимыми случайными величинами

	T		
		d)	для определения тесноты связи между не случайными величинами
		e)	
			случайными величинами, распределённых
			по нормальному закону
		f)	для определения тесноты связи между
		-/	несколькими ранжированными признаками
18	Укажите соответствие	a)	регрессионная, синагическая,
10	приведенных зависимостей		скедастическая, клитическая
	их названиям:	b)	синагическая, клитическая, скедастическая,
	1. $\mu_{4y} = f_4(x; \beta)$	0)	регрессионная
	· ·	c)	клитическая, синагическая, скедастическая,
	2. $\mu_{3y} = f_3(x; \beta)$		регрессионная
	2. $\mu_{2y} = f_2(x; \beta)$	d)	регрессионная, скедастическая, клитическая,
	, i	<i>u</i>)	синагическая
	3. $\mu_{1y} = f(x; \beta)$		
19	Пусть дана следующая		. 1 h 1
	зависимость		$y^* = \frac{1}{}, x^* = x, a^* = \frac{b}{}, b^* = \frac{1}{}$
		a)	y a a
	$y = \frac{a}{b+x}$		$y^* = y, \ x^* = \frac{1}{2}, \ a^* = \frac{b}{2}, \ b^* = \frac{1}{2}$
			y = y, x = -, a = -, b = -
	С помощью какого	b)	$y^* = y, \ x^* = \frac{1}{x}, \ a^* = \frac{a}{b}, \ b^* = \frac{1}{b}$
	преобразования эту		$v^* = v v^* = \frac{1}{a} a^* = \frac{a}{a} b^* - \frac{1}{a}$
	зависимость можно	()	y , $x - x$, $\alpha - b$, $b - b$
	привести к линейной		* * 1 · a · 1
	$y^* = a^* + b^* x^*$	d)	x b b $y^* = y, x^* = \frac{1}{x}, a^* = \frac{a}{b}, b^* = \frac{1}{a}$
20	Регрессионная модель		
	признаётся адекватной,		$\frac{1}{2}\sum_{i}(y_{i}-\overline{y})$
	если выполняется условие:		$F = \frac{k_{i=1}}{k_{i}} >$
	здесь		$F = \frac{\frac{1}{k} \sum_{i=1}^{n} (y_i - \overline{y})}{\frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - y_i)^2} > $
	$F_{\alpha}(v_1 = k, v_2 = n - k - 1)$		$\frac{1}{n-k-1} \sum_{i=1}^{k} (y_i - y_i)$
	$-\alpha$ -квантиль		
	– α -квантильраспределения Фишера;	a)	$> F_{\alpha}(v_1 = k, v_2 = n - k - 1)$
	распределения Фишера,		
	y_{i-M} одельное		$\frac{1}{L}\sum_{i}(y_{i}-\overline{y})^{2}$
	значение зависимой		$F = \frac{K \overline{i=1}}{i=1}$
	переменной;		$1 - \sum_{i=1}^{n} (y_i - y_i)^2$
	y_{i}		$F = \frac{\frac{1}{k} \sum_{i=1}^{n} (y_i - \overline{y})^2}{\frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - y_i)^2} > $
	наблюдаемое значение	• \	$> F_{\alpha}(v_1 = n - k - 1, v_2 = k)$
	зависимой переменной;	b)	1 n
	$\overline{y}_{-\text{среднеe}}$		$\frac{1}{2}\sum_{i=1}^{n}(v_{i}-\overline{v})^{2}$
	значение зависимой		$E = k \sum_{i=1}^{k} \langle j_i \rangle \langle j_i \rangle$
			$r = \frac{1}{1} \sum_{n=0}^{\infty} x_n$
	переменной; $n = 0$ объём		$F = \frac{\frac{1}{k} \sum_{i=1}^{n} (y_i - \overline{y})^2}{\frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - y_i)^2} > $
	выборки;		
	выоорки,	- \	$> F_{\alpha}(v_1 = k, v_2 = n - k - 1)$
	<u>l</u>	(C)	w · 1 · 2 /

k — количество независимых переменных	$F = \frac{\frac{1}{k} \sum_{i=1}^{n} (y_i - \overline{y})^2}{\frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - y_i)^2} < \frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - \overline{y})^2}$
	$d_{0} < F_{\alpha}(v_{1} = k, v_{2} = n - k - 1)$ $F = \frac{\frac{1}{n - k - 1} \sum_{i=1}^{n} (y_{i} - y_{i})^{2}}{\frac{1}{k} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} > $ $e) > F_{\alpha}(v_{1} = k, v_{2} = n - k - 1)$

14.1.2. Экзаменационные вопросы

- 1. Понятие выборки и формы ее записи. Эмпирическая функция распределения. Числовые характеристики выборки
- 2. Оценка неизвестных параметров закона распределения. Точечные и интервальные оценки. Понятие состоятельности, несмещенности и эффективности оценки.
- 3. Функция правдоподобия и оценка максимального правдоподобия. Метод моментов. Оценки математического ожидания и дисперсии случайной величины. Их свойства.
- 4. Оценки параметров нормального распределения, экспоненциального, равномерного, биномиального.
 - 5. Интервальные оценки среднего при известной и неизвестной дисперсии,
- 6. Оценки дисперсии нормального распределения. Интервальные оценки дисперсии и стандартного отклонения нормального распределения.
 - 7. Интервальная оценка параметров экспоненциального распределения.
 - 8. Интервальная оценка параметров биномиального распределения.
- 9. Оценки для центра распределения при неизвестном законе распределения. Оценка рассеяния распределения при неизвестном законе распределения
- 10. Планирование экспериментов для оценки параметров нормального распределения. Оценка среднего при известной дисперсии, Оценка среднего при неизвестной дисперсии
- 11. Планирование экспериментов для оценки параметров Экспоненциального и биномиального распределений.
- 12. Задачи статистической проверки гипотез. Понятие гипотезы. Уровень значимости, уровень достоверности.
- 13. Критерии, основанные на сравнении теоретической плотности распределения и эмпирической гистограммы. Критерий (Пирсона) для простой гипотезы. Критерий (Пирсона) для сложной гипотезы. Критерий Колмогорова-Смирнова. Критерий Крамера-фон Мизеса.
- 14. Критерии нормальности распределения. Модифицированный критерий . Критерий типа Колмогорова Смирнова
- 15. Критерий проверки экспоненциальности распределения. Критерии типа Колмогорова Смирнова. Критерий Фишера
- 16. Критерии согласия для равномерного распределения. Критерии типа Колмогорова-Смирнова
- 17. Проверка гипотезы о числовом значении математического ожидания нормального распределения при известной дисперсии (случаи равных дисперсий). Проверка гипотезы о числовом значении дисперсии нормального распределения
 - 18. Проверка гипотезы о числовом значении параметра экспоненциального распределения
 - 19. Проверка гипотезы о числовом значении параметра биномиального распределения
- 20. Дисперсионный анализ зависимостей. Основные понятия. Однофакторный параметрический дисперсионный анализ.

- 21. Однофакторный непараметрический анализ на основе критерия Краскела-Уоллеса (произвольные альтернативы) и на основе критерия Джонкхиера (альтернативы с упорядочением)
- 22. Двухфакторный дисперсионный анализ. Двухфакторный параметрический дисперсионный анализ.
 - 23. Корреляционный анализ. Вычисление параметрических коэффициентов корреляции.
- 24. Вычисление непараметрических коэффициентов корреляции. Коэффициент ранговой корреляции Спирмана. Коэффициент ранговой корреляции Кендалла. Коэффициент конкордации.
- 25. Регрессионный анализ. Регрессионная, скедастическая, клитическая и синагическая зависимости изменения функции распределения случайной величины от .
- 26. Построение модели регрессии. Оценка адекватности регрессии. Доверительный интервал для уравнения регрессии. Оценка дисперсии коэффициентов регрессии и доверительных интервалов.

14.1.3. Темы коллоквиумов

- Тема 1. Генерация случайных чисел с заданным законом распределения
- Тема 2. Оценка закона распределения на основе выборочных данных
- Тема 3. Дисперсионный анализ данных
- Тема 4. Корреляционный анализ случайных данных
- Тема 5. Линейная регрессия

14.1.4. Темы лабораторных работ

Генерация случайных чисел с заданным законом распределения

Оценка закона распределения на основе выборочных данных

Дисперсионный анализ случайных данных

Корреляционный анализ случайных данных

Построение модели парной регрессии

Оценка погрешности регрессии

Оценка адекватности модели

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 — Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

эдоровых и инвалидов		
Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

в печатной форме;

- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.