МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	У	ТВЕРЖ	ДАЮ	
Пр	оректо	ор по уч	ебной раб	оте
			_ П. Е. Тро	нк
‹ ‹	>>		20	Γ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Физико-химические основы технологии электронных средств 1

Уровень образования: высшее образование - бакалавриат

Направление подготовки (специальность): 11.03.03 Конструирование и технология электронных

средств

Направленность (профиль): Технология электронных средств

Форма обучения: очная

Факультет: РКФ, Радиоконструкторский факультет

Кафедра: РЭТЭМ, Кафедра радиоэлектронных технологий и экологического мониторинга

Kypc: 2 Семестр: 4

Учебный план набора 2014 года

Распределение рабочего времени

№	Виды учебной деятельности	4 семестр	Всего	Единицы
1	Лекции	26	26	часов
2	Практические занятия	18	18	часов
3	Лабораторные работы	16	16	часов
4	Контроль самостоятельной работы (курсовой проект / курсовая работа)	8	8	часов
5	Всего аудиторных занятий	68	68	часов
6	Самостоятельная работа	76	76	часов
7	Всего (без экзамена)	144	144	часов
8	Подготовка и сдача экзамена	36	36	часов
9	Общая трудоемкость	180	180	часов
		5.0	5.0	3.E

Экзамен: 4 семестр

Курсовая работа (проект): 4 семестр

Рассмотрена	и одс	брена на	за	седании	кафедры
протокол №	49	от « <u>3</u>	_>>	3	20 <u>17</u> г.

ЛИСТ СОГЛАСОВАНИЙ

вательного стандарта высшего образования (сти) 11.03.03 Конструирование и технология	м требований федерального государственного образо- ФГОС ВО) по направлению подготовки (специально- электронных средств, утвержденного 12 ноября 2015 и кафедры «» 20 года, протокол
Разработчики:	
Старший преподаватель кафедры РЭТЭМ каф. РЭТЭМ	А. А. Иванов
заведующий кафедрой РЭТЭМ каф. РЭТЭМ	В. И. Туев
доцент каф. РЭТЭМ	Н. Н. Несмелова
Заведующий обеспечивающей каф. РЭТЭМ	В. И. Туев
Рабочая программа согласована с факу направления подготовки (специальности).	льтетом, профилирующей и выпускающей кафедрами
Декан РКФ	Д.В.Озеркин
Заведующий выпускающей каф. РЭТЭМ	В. И. Туев
Эксперт:	
Доцент, к.т.н. каф. РЭТЭМ	В. С. Солдаткин

1. Цели и задачи дисциплины

1.1. Цели дисциплины

познакомиться с тенденциями развития электроники, измерительной и вычислительной техники, информационных технологий, научиться использовать полученные знания в своей профессиональной деятельности

1.2. Задачи дисциплины

- изучить историю развития электронных технологий
- познакомиться с технологией интегральных микросхем
- изучить физико-химические основы технологии выращивания монокристаллического кремния и технологии легирования полупроводников
- изучить физико-химические основы поверхностных процессов и явлений, процессы очистки поверхности подложек изучить физико-химические основы ионно-плазменного и плазмо-химического травления, образования и роста тонких пленок

2. Место дисциплины в структуре ОПОП

Дисциплина «Физико-химические основы технологии электронных средств 1» (Б1.В.ОД.9) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются следующие дисциплины: Материалы и компоненты электронных средств, Теоретические основы технологии радиоэлектронных средств, Физика, Физика полупроводниковых структур, Физико-химические основы технологии электронных средств 1, Физическая химия, Физические основы микро- и наноэлектроники, Химическая физика, Химия.

Последующими дисциплинами являются: Моделирование и оптимизация технологических процессов РЭС, Теплообмен в радиоэлектронных средствах, Технология производства электронных средств, Технология сборки и монтажа мощных светоизлучающих изделий.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

– ОПК-7 способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;

В результате изучения дисциплины студент должен:

- знать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий, возможности использования полученных знаний в своей профессиональной деятельности; роль физико-химических закономерностей в разработке и совершенствовании электронных технологий, физико-химические закономерности, лежащие в их основе; связи между технологическими факторами и параметрами физических структур и элементов; историю развития электронных технологий; основы технологии интегральных микросхем; физико-химические основы технологии выращивания монокристаллического кремния и технологии легирования полупроводников; физико-химические основы поверхностных процессов и явлений, процессы очистки поверхности подложек; физико-химические основы ионно-плазменного и плазмо-химического травления, образования и роста тонких пленок
- уметь учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности; понимать роль физико-химических закономерностей в разработке и совершенствовании электронных технологий, выявлять физико-химические закономерности, лежащие в их основе; устанавливать связь между технологическими факторами и параметрами физических структур и элементов; применять технологии интегральных микросхем, выращивания монокристаллического кремния, легирования полупроводников; учитывать в профессиональной деятельности физико-химические основы поверхностных процессов и явлений, физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок; понимать процессы очистки поверхности подложек
- **владеть** способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной

деятельности; пониманием роли физико-химических закономерностей в разработке и совершенствовании электронных технологий и физико-химических закономерностей, лежащих в их основе; способностью устанавливать связь между технологическими факторами и параметрами физических структур и элементов; способностью применять технологии интегральных микросхем, выращивания монокристаллического кремния, легирования полупроводников; готовностью учитывать в профессиональной деятельности физико-химические основы поверхностных процессов и явлений, физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок; способностью понимать процессы очистки поверхности подложек

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		4 семестр
Аудиторные занятия (всего)	68	68
Лекции	26	26
Практические занятия	18	18
Лабораторные работы	16	16
Контроль самостоятельной работы (курсовой проект / курсовая работа)	8	8
Самостоятельная работа (всего)	76	76
Оформление отчетов по лабораторным работам	16	16
Проработка лекционного материала	28	28
Подготовка к практическим занятиям, семинарам	32	32
Всего (без экзамена)	144	144
Подготовка и сдача экзамена	36	36
Общая трудоемкость ч	180	180
Зачетные Единицы	5.0	5.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Курсовая работа	Всего часов (без экзамена)	Формируемые компетенции
	4	4 семест	p				
1 Развитие электронных технологий	4	2	0	13	8	19	ОПК-7
2 Общие сведения о технологии интегральных микросхем	6	2	6	8		22	ОПК-7

3 Физико-химические основы технологии выращивания монокристаллического кремния	4	4	0	12		20	ОПК-7
4 Физико-химические основы поверхностных процессов и явлений	2	4	0	12		18	ОПК-7
5 Физико-химические основы легирования полупроводников	4	0	4	4		12	ОПК-7
6 Физико-химические процессы очистки поверхности подложек	2	2	0	12		16	ОПК-7
7 Физико-химические основы ионно-плазменного и плазмохимического травления	2	4	0	13		19	ОПК-7
8 Физико-химические основы образования и роста тонких пленок	2	0	6	2		10	ОПК-7
Итого за семестр	26	18	16	76	8	144	
Итого	26	18	16	76	8	144	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины по лекциям	Трудоемкость, ч	Формируемые компетенции
	4 семестр		
1 Развитие электронных технологий	Этапы развития электроники. Классификация интегральных микросхем (ИМС). Профильно-технологическая схема.	4	ОПК-7
	Итого	4	
2 Общие сведения о технологии интегральных микросхем	Физико-химические характеристики и свойства полупроводников. Особенности формирования структуры полупроводниковой ИМС на примере эпитаксиально-планарного транзистора. Общая характеристика технологического процесса изготовления полупроводниковых ИМС	6	ОПК-7
	Итого	6	
3 Физико-химические основы технологии выращивания монокристаллического кремния	Получение поликристаллического кремния. Выращивание монокристаллических слитков кремния методом Чохральского. Получение монокристаллического кремния методом бестигельной зонной плавки	4	ОПК-7
	Итого	4	
4 Физико-химические основы	Термодинамика поверхностных про-	2	ОПК-7

поверхностных процессов и явлений	цессов. Смачивание. Адсорбционные процессы. Адгезия		
	Итого	2	
5 Физико-химические основы легирования полупроводников	Диффузионное легирование. Законы диффузии. Механизм диффузии. Факторы, влияющие на коэффициент диффузии. Техника выполнения диффузионного легирования. Ионная имплантация. Достоинства и недостатки ионной имплантации. Процессы взаимодействия ионов с веществом. Механизмы потерь энергии при взаимодействиииона с веществом. Распределение пробега имплантированных ионов в твердом теле. Каналирование ионов. Образование и отжиг радиационных дефектов. Радиационно-стимулированная диффузия	4	ОПК-7
	Итого	4	
6 Физико-химические процессы очистки поверхности подложек	Виды загрязнений. Физические методы очистки. Механизм удаления поверхностных загрязнений. Химическая обработка подложек. Кинетика химического травления. Газовое травление. Термообработка	2	ОПК-7
	Итого	2	
7 Физико-химические основы ионно-плазменного и плазмохимического травления	Механизм ионного травления. Коэффициент ионного распыления. Схема ионно-плазменного распыления. Триодная схема ИПТ. Ионно-лучевое травление. Плазмохимическое травление. Реактивное ионное травление	2	ОПК-7
	Итого	2	
8 Физико-химические основы образования и роста тонких пленок	Термодинамическая модель механизма зарождения и роста пленок. Гетерогенное образование зародышей.Влияние технологических факторов на структуру пленок. Особенности роста пленок. Эпитаксиальное наращивание пленок. Молекулярно-лучевая эпитаксия	2	ОПК-7
	Итого	2	
Итого за семестр		26	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 - Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо
	изучение обеспечивающих и обеспечиваемых дисциплин

	1	2	3	4	5	6	7	8
	Предш	ествуюц	цие дисц	иплины				
1 Материалы и компоненты электронных средств	+	+	+	+	+	+	+	+
2 Теоретические основы технологии радиоэлектронных средств	+	+	+	+	+	+	+	+
3 Физика	+	+	+	+	+	+	+	+
4 Физика полупроводниковых структур	+	+	+	+	+	+	+	+
5 Физико-химические основы технологии электронных средств 1	+	+	+	+	+	+	+	+
6 Физическая химия	+	+	+	+	+	+	+	+
7 Физические основы микро- и наноэлектроники	+	+	+	+	+	+	+	+
8 Химическая физика	+	+	+	+	+	+	+	+
9 Химия	+	+	+	+	+	+	+	+
	Посл	іедующи	е дисциі	тлины				
1 Моделирование и оптимизация технологических процессов РЭС	+	+	+	+	+	+	+	+
2 Теплообмен в радиоэлектронных средствах	+	+	+	+	+	+	+	+
3 Технология производства электронных средств	+	+	+	+	+	+	+	+
4 Технология сборки и монтажа мощных светоизлучающих изделий	+	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4

Таблица 5.4 – Соответствие компетенций и видов занятий, формируемых при изучении дисциплины

Виды занятий	Формы контроля
--------------	----------------

Компетенции	Лекции	Практические занятия	Лабораторные работы	Контроль самостоятельной работы (курсовой проект / курсовая работа)	Самостоятельная работа	
ОПК-7	+	+	+	+	+	Собеседование, Отчет по лабораторной работе, Опрос на занятиях, Отчет по курсовой работе, Отчет по практическому занятию

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП

7. Лабораторные работы Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7. 1 – Наименование лабораторных работ

Названия разделов	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	4 семестр		
2 Общие сведения о технологии интегральных микросхем	Термодинамические принципы описания и анализа технологических процессов	6	ОПК-7
	Итого	6	
5 Физико-химические основы легирования полупроводников	Методы расчета констант равновесия и равновесных выходов	4	ОПК-7

	Итого	4	
8 Физико-химические основы образования и роста тонких пленок	Расчеты оптимальных термодинамических параметров важнейших технологических процесса производства ЭС	6	ОПК-7
	Итого	6	
Итого за семестр		16	

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8. 1 – Наименование практических занятий (семинаров)

Таолица в. 1 – Паименование практи	COMMITTED (COMMITTED DD)		
Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	4 семестр		
1 Развитие электронных технологий	Классификация интегральных микросхем	2	ОПК-7
	Итого	2	
2 Общие сведения о технологии интегральных микросхем	Характеристики и свойства полупроводниковых материалов	2	ОПК-7
	Итого	2	
3 Физико-химические основы технологии выращивания	Методы создания полупроводниковых структур с заданными свойствами	4	ОПК-7
монокристаллического кремния	Итого	4	
4 Физико-химические основы поверхностных процессов и	Поверхностное натяжение. Смачивание, адгезия. Адсорбция	4	ОПК-7
явлений	Итого	4	
6 Физико-химические процессы очистки поверхности подложек	Методы получения защитных диэлектрических пленок	2	ОПК-7
	Итого	2	
7 Физико-химические основы ионно-плазменного и	Химические и электрохимические методы осаждения металлических пленок	4	ОПК-7
плазмохимического травления	Итого	4	
Итого за семестр		18	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 - Виды самостоятельной работы, трудоемкость и формируемые компетенции

Тиолици у.1 Виды симос	тоятсльной расоты, грудоск	<u>5</u>		ыс компетенции	
Названия разделов	Виды самостоятельной работы	Трудоемкост	Формируемые компетенции	Формы контроля	
4 семестр					

1 Развитие электронных технологий	Подготовка к практиче- ским занятиям, семина- рам	12	ОПК-7	Опрос на занятиях, Отчет по практическому занятию	
	Проработка лекционного материала	1			
	Итого	13			
2 Общие сведения о технологии интегральных	Подготовка к практиче- ским занятиям, семина- рам	2	ОПК-7	Опрос на занятиях, Отчет по практическому занятию	
микросхем	Проработка лекционного материала	6			
	Итого	8			
3 Физико-химические основы технологии выращивания	Подготовка к практиче- ским занятиям, семина- рам	4	ОПК-7	Опрос на занятиях, Отчет по лабораторной работе, Отчет по практиче-	
монокристаллического кремния	Проработка лекционного материала	4		скому занятию	
	Оформление отчетов по лабораторным работам	4			
	Итого	12			
4 Физико-химические основы поверхностных процессов и явлений	Подготовка к практиче- ским занятиям, семина- рам	6	ОПК-7	Опрос на занятиях, Отчет по практическому занятию	
	Проработка лекционного материала	6			
	Итого	12			
5 Физико-химические основы легирования	Проработка лекционного материала	4	ОПК-7	Опрос на занятиях	
полупроводников	Итого	4			
6 Физико-химические процессы очистки поверхности подложек	Подготовка к практическим занятиям, семинарам	4	ОПК-7	Опрос на занятиях, Отчет по лабораторной работе, Отчет по практиче-	
	Проработка лекционного материала	4		скому занятию	
	Оформление отчетов по лабораторным работам	4			
	Итого	12			
7 Физико-химические основы ионно- плазменного и	Подготовка к практиче- ским занятиям, семина- рам	4	ОПК-7	Опрос на занятиях, Отчет по лабораторной работе, Отчет по практиче-	
плазмохимического травления	Проработка лекционного материала	1		скому занятию	
	Оформление отчетов по лабораторным работам	8			
	Итого	13			

8 Физико-химические основы образования и	Проработка лекционного материала	2	ОПК-7	Опрос на занятиях
роста тонких пленок	Итого	2		
Итого за семестр		76		
	Подготовка и сдача экзамена / зачета	36		Экзамен
Итого		112		

10. Курсовая работа (проект)

Трудоемкость аудиторных занятий и формируемые компетенции в рамках выполнения курсовой работы (проекта) представлены таблице 10.1.

Таблица 10. 1 – Трудоемкость аудиторных занятий и формируемые компетенции в рамках выполне-

ния курсовой работы (проекта)

Наименование аудиторных занятий	Трудоемкость, ч	Формируемые компетенции
4 семестр		
Целью курсовой работы является закрепление и углубление знаний, полученных при изучении курса. Основная задача курсовой работы состоит в том, чтобы освоить методы расчета параметров ионно-плазменной обработки материалов в двухэлектродных системах катодного распыления. Распыление материалов и образование слоев путем напыления при низких давлениях стало важным физическим и технологическим процессом при изготовлении изделий микроэлектроники и технологии производства электронных средств (ЭС).	8	ОПК-7
Итого за семестр	8	

10.1 Темы курсовых работ

Примерная тематика курсовых работ (проектов):

- ТЕХНИКА КАТОДНОГО РАСПЫЛЕНИЯ
- РАСЧЕТ ПОТЕНЦИАЛА ЗАЖИГАНИЯ, ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК И ИНТЕНСИВНОСТИ ОСАЖДЕНИЯ
 - РАСЧЕТ КОЭФФИЦИЕНТА РАСПЫЛЕНИЯ МАТЕРИАЛА
 - РАСЧЕТ ТЕМПЕРАТУРНОГО РЕЖИМА КАТОДА-МИШЕНИ

11. Рейтинговая система для оценки успеваемости студентов

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр			
	4 семестр						
Опрос на занятиях	5	5	5	15			
Отчет по лабораторной работе	5	5	5	15			

Отчет по практическому занятию	8	8	9	25
Собеседование	5	5	5	15
Итого максимум за период	23	23	24	70
Экзамен				30
Нарастающим итогом	23	46	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11. 2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11. 3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (vyropy orpo gyyro yy yyo)
2 (1970) 2070 2070 2070 2070 2070 2070 2070 2	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Юрков, Н.К. Технология производства электронных средств. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2014. 480 с. Режим доступа: http://e.lanbook.com/book/41019 Загл. с экрана. [Электронный ресурс]. http://e.lanbook.com/book/41019
- 2. Физико-химические основы технологии электронных средств: Учебное пособие / Иванов А. А., Ряполова Ю. В., Солдаткин В. С. 2017. 307 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6922, дата обращения: 08.05.2017.

12.2. Дополнительная литература

- 1. Сушков, А.Д. Вакуумная электроника. Физико-технические основы. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2004. 464 с. Режим доступа: http://e.lanbook.com/book/639 Загл. с экрана. [Электронный ресурс]. http://e.lanbook.com/book/639
- 2. Волков, Ю.С. Электрофизические и электрохимические процессы обработки материалов. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2016. 396 с. Режим доступа:

http://e.lanbook.com/book/75505 — Загл. с экрана. [Электронный ресурс]. - http://e.lanbook.com/book/75505

3. Физико-химические основы технологии электронных систем: Учебное пособие / Чикин Е. В. - 2006. 209 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/1130, дата обращения: 08.05.2017.

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Физико-химические основы технологии электронных средств: Учебно-методическое пособие для проведения практических занятий и самостоятельной работы / Ряполова Ю. В., Иванов А. А. 2017. 46 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6895, дата обращения: 08.05.2017.
- 2. Физико-химические основы технологии электронных средств: Методические указания к лабораторным работам / Ряполова Ю. В., Иванов А. А., Каменкова В. С., Солдаткин В. С. 2017. 88 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6896, дата обращения: 08.05.2017.
- 3. Физико-химические основы технологии электронных средств: Методические указания по выполнению курсовой работы / Ряполова Ю. В., Иванов А. А. 2017. 37 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6906, дата обращения: 08.05.2017.

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

- 1. http://www1.fips.ru/wps/wcm/connect/content_ru/ru Федеральный институт промышленной собственности, РОСПАТЕНТ
 - 2. http://elibrary.ru/defaultx.asp eLIBRARY.ru, научная электронная библиотека
 - 3. https://www.google.ru поисковая система Гугл
 - 4. https://edu.tusur.ru научно-образовательный портал ТУСУРа
 - 5. https://e.lanbook.com/ электронная библиотека издательства "Лань"

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для практических занятий

Для проведения практических занятий используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.3. Материально-техническое обеспечение для лабораторных работ

Для проведения лабораторных работы используется учебная аудитория, расположенная по адресу 634050, г. Томск, пр. Ленина, 40, 4 этаж, ауд. 424. Состав оборудования: учебная мебель; вытяжная вентиляция, лабораторные столы, химические реактивы, лабораторное и контрольно-измерительное оборудование

13.1.4. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634050, г. Томск, пр. Ленина, 40, 2 этаж, ауд. 233. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Ce1eгоп D336 2.8ГГц. - 5 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационнообразовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Фонд оценочных средств

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Таблица 14 – Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по	Тесты, письменные самостоятельные	Преимущественно проверка

общемедицинским	работы, вопросы к зачету,	методами, исходя из состояния
показаниям	контрольные работы, устные ответы	обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

		УТВЕРЖДАЮ	
Проректор по учебной работ			
		П. Е. Тр	нкос
‹ ‹	>>	20	Γ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Физико-химические основы технологии электронных средств 1

Уровень образования: высшее образование - бакалавриат

Направление подготовки (специальность): **11.03.03 Конструирование и технология электронных средств**

Направленность (профиль): Технология электронных средств

Форма обучения: очная

Факультет: РКФ, Радиоконструкторский факультет

Кафедра: РЭТЭМ, Кафедра радиоэлектронных технологий и экологического мониторинга

Курс: **2** Семестр: **4**

Учебный план набора 2014 года

Разработчики:

- Старший преподаватель кафедры РЭТЭМ каф. РЭТЭМ А. А. Иванов
- заведующий кафедрой РЭТЭМ каф. РЭТЭМ В. И. Туев
- доцент каф. РЭТЭМ Н. Н. Несмелова

Экзамен: 4 семестр

Курсовая работа (проект): 4 семестр

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1. Таблица 1 – Перечень закрепленных за лисциплиной компетенций

Таблица 1 -	 Перечень закрепленных за дисциплиной ком 	петенций
Код	Формулировка компетенции	Этапы формирования компетенций
ОПК-7	способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности	Должен знать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий, возможности использования полученных знаний в своей профессиональной деятельности; роль физико—химических закономерностей в разработке и совершенствовании электронных технологий, физико—химические закономерности, лежащие в их основе; связи между технологическими факторами и параметрами физических структур и элементов; историю развития электронных технологий; основы технологии интегральных микросхем; физико-химические основы технологии выращивания монокристаллического кремния и технологии легирования полупроводников; физико-химические основы поверхностных процессов и явлений, процессы очистки поверхности подложек; физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок; Должен уметь учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности; понимать роль физико—химические закономерностей в разработке и совершенствовании электронных технологий, выявлять физико—химические закономерности, лежащие в их основе; устанавливать связь между технологическими факторами и параметрами физических структур и элементов; применять технологии интегральных микросхем, выращивания монокристаллического кремния, легирования полупроводников; учитывать в профессиональной деятельности физико-химические основы поверх-
	1	

ностных процессов и явлений, физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок; понимать процессы очистки поверхности подложек;

Должен владеть способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности; пониманием роли физикохимических закономерностей в разработке и совершенствовании электронных технологий и физико-химических закономерностей, лежащих в их основе; способностью устанавливать связь между технологическими факторами и параметрами физических структур и элементов; способностью применять технологии интегральных микросхем, выращивания монокристаллического кремния, легирования полупроводников; готовностью учитывать в профессиональной деятельности физико-химические основы поверхностных процессов и явлений, физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок; способностью понимать процессы очистки поверхности подложек;

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совер- шенствует действия ра- боты
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в ис- следовании, приспосаб- ливает свое поведение к обстоятельствам в реше- нии проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом наблюдении

2 Реализация компетенций

2.1 Компетенция ОПК-7

ОПК-7: способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Габлица 3 – Этапы формирования компетенции и используемые средства оценивания			
Состав	Знать	Уметь	Владеть
Содержание эта-	современные тенденции	учитывать современные	способностью учитыват
ПОВ	развития электроники,	тенденции развития	современные тенденции
	измерительной и вычис-	электроники, измери-	развития электроники,
	лительной техники, ин-	тельной и вычислитель-	измерительной и вычис-
	формационных техноло-	ной техники, информа-	лительной техники, ин-
	гий, возможности ис-	ционных технологий в	формационных техноло-
	пользования полученных	своей профессиональной	гий в своей профессио-
	знаний в своей профес-	деятельности; понимать	нальной деятельности;
	сиональной деятельно-	роль физико-химиче-	пониманием роли физи-
	сти; роль физико-хими-	ских закономерностей в	ко-химических законо-
	ческих закономерностей	разработке и совершен-	мерностей в разработке
	в разработке и совершен-	ствовании электронных	совершенствовании элег
	ствовании электронных	технологий, выявлять	тронных технологий и
	технологий, физико-хи-	физико-химические за-	физико-химических за-
	мические закономерно-	кономерности, лежащие	кономерностей, лежащи
	сти, лежащие в их осно-	в их основе; устанавли-	в их основе; способно-
	ве; связи между техноло-	вать связь между техно-	стью устанавливать связ
	гическими факторами и	логическими факторами	между технологически-
	параметрами физических	и параметрами физиче-	ми факторами и парамет
	структур и элементов;	ских структур и элемен-	рами физических струк-
	историю развития элек-	тов; применять техноло-	тур и элементов; способ
	тронных технологий;	гии интегральных ми-	ностью применять тех-
	основы технологии инте-	кросхем, выращивания	нологии интегральных
	гральных микросхем;	монокристаллического	микросхем, выращива-
	физико-химические	кремния, легирования	ния монокристалличе-
	основы технологии вы-	полупроводников; учи-	ского кремния, легирова
	ращивания монокристал-	тывать в профессиональ-	ния полупроводников;
	лического кремния и тех-	ной деятельности фи-	готовностью учитывать
	нологии легирования по-	зико-химические основы	профессиональной дея-
	лупроводников; физико-	поверхностных процес-	тельности физико-хими
	химические основы по-	сов и явлений, физико-	ческие основы поверх-
	верхностных процессов	химические основы	ностных процессов и яв
	и явлений, процессы	ионно-плазменного и	лений, физико-химиче-
	очистки поверхности	плазмохимического трав-	ские основы ионно-плаз
	подложек; физико-хими-	ления, образования и ро-	менного и плазмохими-
	ческие основы ионно-	ста тонких пленок; пони-	ческого травления, об-
	плазменного и плазмохи-	мать процессы очистки	разования и роста тон-
	мического травления, об-	поверхности подложек	ких пленок; способно-
	разования и роста тон-		стью понимать процесс
	ких пленок		очистки поверхности
			подложек
Виды занятий	• Практические заня-	• Практические заня-	• Лабораторные рабо-
	тия;	тия;	ты;
	111/1,	111/1,	111,

	 Лабораторные работы; Лекции; Самостоятельная работа; Контроль самостоятельной работы (курсовой проект / курсовая работа); 	 Лабораторные работы; Лекции; Самостоятельная работа; Контроль самостоятельной работы (курсовой проект / курсовая работа); 	 Самостоятельная работа; Контроль самостоятельной работы (курсовой проект / курсовая работа);
Используемые средства оценивания	 Собеседование; Отчет по лабораторной работе; Опрос на занятиях; Отчет по курсовой работе; Отчет по практическому занятию; Экзамен; Курсовая работа (проект); 	 Собеседование; Отчет по лабораторной работе; Опрос на занятиях; Отчет по курсовой работе; Отчет по практическому занятию; Экзамен; Курсовая работа (проект); 	 Отчет по лабораторной работе; Отчет по курсовой работе; Отчет по практическому занятию; Экзамен; Курсовая работа (проект);

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4. Таблица 4 – По

Таблица 4 – Показатели и критерии оценивания компетенции на этапах			
Состав	Знать	Уметь	Владеть
Отлично	• современные тенден-	• учитывать современ-	• способностью учиты-
(высокий уровень)	ции развития электро-	ные тенденции разви-	вать современные тен-
	ники, измерительной и	тия электроники, изме-	денции развития элек-
	вычислительной техни-	рительной и вычисли-	троники, измеритель-
	ки, информационных	тельной техники, ин-	ной и вычислительной
	технологий, возможно-	формационных техно-	техники, информацион-
	сти использования по-	логий в своей профес-	ных технологий в своей
	лученных знаний в сво-	сиональной деятельно-	профессиональной дея-
	ей профессиональной	сти; понимать роль фи-	тельности; пониманием
	деятельности; роль фи-	зико-химических зако-	роли физико–химиче-
	зико-химических зако-	номерностей в разра-	ских закономерностей в
	номерностей в разра-	ботке и совершенство-	разработке и совершен-
	ботке и совершенство-	вании электронных тех-	ствовании электронных
	вании электронных тех-	нологий, выявлять фи-	технологий и физико–
	нологий, физико-хими-	зико-химические зако-	химических закономер-
	ческие закономерности,	номерности, лежащие в	ностей, лежащих в их
	лежащие в их основе;	их основе; устанавли-	основе; способностью
	связи между технологи-	вать связь между техно-	устанавливать связь
	ческими факторами и	логическими факторами	между технологически-
	параметрами физиче-	и параметрами физиче-	ми факторами и пара-
	ских структур и элемен-	ских структур и элемен-	метрами физических
	тов; историю развития	тов; применять техно-	структур и элементов;
	электронных техноло-	логии интегральных	способностью приме-
	гий; основы технологии	микросхем, выращива-	нять технологии инте-
	интегральных микро-	ния монокристалличе-	гральных микросхем,
	схем; физико-химиче-	ского кремния, легиро-	выращивания монокри-
	ские основы техноло-	вания полупроводни-	сталлического кремния,
	гии выращивания моно-	ков; учитывать в про-	легирования полупро-

	кристаллического кремния и технологии легирования полупроводников; физико-химические основы поверхностных процессов и явлений, процессы очистки поверхности подложек; физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок, процессы очистки поверхности подложек;	фессиональной деятельности физико-химические основы поверхностных процессов и явлений, физико-химические основы ионноплазменного и плазмохимического травления, образования и роста тонких пленок; понимать процессы очистки поверхности подложек;	водников; готовностью учитывать в профессиональной деятельности физико-химические основы поверхностных процессов и явлений, физико-химические основы ионно-плазменного и плазмохимического травления, образования и роста тонких пленок; способностью понимать процессы очистки поверхности подложек;
Хорошо (базовый уровень)	• современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий, возможности использования полученных знаний в своей профессиональной деятельности; роль физико—химических закономерностей в разработке и совершенствовании электронных технологий, физико—химические закономерности, лежащие в их основе; связи между технологическими факторами и параметрами физических структур и элементов; историю развития электронных технологий; основы технологии интегральных микросхем;	• учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности; понимать роль физико—химических закономерностей в разработке и совершенствовании электронных технологий, выявлять физико—химические закономерности, лежащие в их основе; устанавливать связь между технологическими факторами и параметрами физических структур и элементов;	• способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности; пониманием роли физико—химических закономерностей в разработке и совершенствовании электронных технологий и физико—химических закономерностей, лежащих в их основе; способностью устанавливать связь между технологическими факторами и параметрами физических структур и элементов;
Удовлетворительн о (пороговый уровень)	• современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий, возможности использования полученных знаний в своей профессиональной деятельности;	• учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;	• способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

3.1 Вопросы на собеседование

— Назвать основные этапы развития электроники. Что такое планарная технология? Назвать основные виды интегральных микросхем. В чем особенности полупроводниковых ИМС? Изобразить структуры основных элементов ИМС, выполненных по планарной технологии (диод, резистор, транзистор). В чем особенности гибридных ИМС? Каковы характерные особенности совмещенных ИМС? Что такое степень интеграции? Как подразделяются ИМС в зависимости от степени интеграции? Что такое профильно-технологическая схема? Перечислить основные технологические процессы, связанные с изготовлением ИМС. На какие группы можно подразделить основные технологические процессы изготовления ИМС?

3.2 Темы опросов на занятиях

- Этапы развития электроники. Классификация интегральных микросхем (ИМС). Профильно-технологическая схема.
- Физико-химические характеристики и свойства полупроводников. Особенности формирования структуры полупроводниковой ИМС на примере эпитаксиально-планарного транзистора. Общая характеристика технологического процесса изготовления полупроводниковых ИМС
- Получение поликристаллического кремния. Выращивание монокристаллических слитков кремния методом Чохральского. Получение монокристаллического кремния методом бестигельной зонной плавки
- Термодинамика поверхностных процессов. Смачивание. Адсорбционные процессы. Адгезия
- Диффузионное легирование. Законы диффузии. Механизм диффузии. Факторы, влияющие на коэффициент диффузии. Техника выполнения диффузионного легирования. Ионная имплантация. Достоинства и недостатки ионной имплантации. Процессы взаимодействия ионов с веществом. Механизмы потерь энергии при взаимодействии
- иона с веществом. Распределение пробега имплантированных ионов в твердом теле. Каналирование ионов. Образование и отжиг радиационных дефектов. Радиационно-стимулированная диффузия
- Виды загрязнений. Физические методы очистки. Механизм удаления поверхностных загрязнений. Химическая обработка подложек. Кинетика химического травления. Газовое травление. Термообработка
- Механизм ионного травления. Коэффициент ионного распыления. Схема ионно-плазменного распыления. Триодная схема ИПТ. Ионно-лучевое травление. Плазмохимическое травление. Реактивное ионное травление
- Термодинамическая модель механизма зарождения и роста пленок. Гетерогенное образование зародышей.Влияние технологических факторов на структуру пленок. Особенности роста пленок. Эпитаксиальное наращивание пленок. Молекулярно-лучевая эпитаксия

3.3 Экзаменационные вопросы

- Этапы развития электроники. Классификация интегральных микросхем (ИМС). Профильно-технологическая схема.
- Физико-химические характеристики и свойства полупроводников. Особенности формирования структуры полупроводниковой ИМС на примере эпитаксиально-планарного транзистора. Общая характеристика технологического процесса изготовления полупроводниковых ИМС
- Получение поликристаллического кремния. Выращивание монокристаллических слитков кремния методом Чохральского. Получение монокристаллического кремния методом бестигельной зонной плавки
- Термодинамика поверхностных процессов. Смачивание. Адсорбционные процессы. Адгезия

- Диффузионное легирование. Законы диффузии. Механизм диффузии. Факторы, влияющие на коэффициент диффузии. Техника выполнения диффузионного легирования. Ионная имплантация. Достоинства и недостатки ионной имплантации. Процессы взаимодействия ионов с веществом. Механизмы потерь энергии при взаимодействии иона с веществом. Распределение пробега имплантированных ионов в твердом теле. Каналирование ионов. Образование и отжиг радиационных дефектов. Радиационно-стимулированная диффузия
- Виды загрязнений. Физические методы очистки. Механизм удаления поверхностных загрязнений. Химическая обработка подложек. Кинетика химического травления. Газовое травление. Термообработка
- Механизм ионного травления. Коэффициент ионного распыления. Схема ионно-плазменного распыления. Триодная схема ИПТ. Ионно-лучевое травление. Плазмохимическое травление. Реактивное ионное травление
- Термодинамическая модель механизма зарождения и роста пленок. Гетерогенное образование зародышей.Влияние технологических факторов на структуру пленок. Особенности роста пленок. Эпитаксиальное наращивание пленок. Молекулярно-лучевая эпитаксия

3.4 Вопросы для подготовки к практическим занятиям, семинарам

- Классификация интегральных микросхем
- Характеристики и свойства полупроводниковых материалов
- Методы создания полупроводниковых структур с заданными свойствами
- Поверхностное натяжение. Смачивание, адгезия. Адсорбция
- Методы получения защитных диэлектрических пленок
- Химические и электрохимические методы осаждения металлических пленок

3.5 Темы лабораторных работ

- Исследование процессов получения защитных диэлектрических покрытий методом анодного оксидирования.
 - Исследование процессов адсорбции.
 - Исследование процессов вакуум-термического метода нанесения тонких пленок
- Исследование процессов получения металлических пленок методом электрохимического осаждения.

3.6 Темы курсовых проектов (работ)

- История развития электроники. Особенности планарной технологии. Классификация физико–химических процессов в технологии электронных средств.
- Энергия Гиббса и энергия Гельмгольца. Условия самопроизвольности процессов. Особенности кристаллической структуры полупроводниковых материалов. Индексы Миллера. Идеальные и реальные кристаллы. Дефекты кристаллической решетки.
- Элементы теории взаимодействия нейтральных частиц с поверхностью твердого тела. Миграционная подвижность, поверхностная диффузия и взаимная растворимость материалов. Физико-химические границы раздела. Адсорбционные явления и процессы, физико-химические основы ад-сорбции и адгезии. Природа сил адгезии и кинетика образования адге зионных связей. Энергетика поверхностных реакций. Идеальная и реальная поверхности. Понятие об атомно— чистой поверхности. Процессы на реальный поверхности и кинетика удаления загрязнений. Физико-химические основы процессов загрязнения и роста пленок и слоев. Анализ гомогенного и гетерогенного зарождения новой фазы. Влияние физико-химических факторов зарождения пленок на структуру и свойства пленок. Эпитаксиальный рост пленок.
- Основные законы диффузии. Механизм диффузионных процессов. Многокомпонентная и многостадийная диффузия и ее роль в технологических процессах. Зависимость скорости и направления процессов от физико—химических параметров и технологических факторов. Радиационно-стимулированная диффузия.
- Виды загрязнений и способы их удаления. Процессы на реальной поверхности и кинетика удаления загрязнений. Поверхностно-активные вещества. Виды поверхностного травления в технологии РЭС. Кинетика и основные характеристики ионно-плазменного и плазмо-химического травления.

- Термодинамика и кинетика процесса испарения в вакууме. Основы процесса получения тонких пленок методом термовакуумного испарения. Основы технологии получения тонких пленок ионно-плазменным распылением.
- основы электрохимических процессов осаждения слоев и пленок. Виды поляризации при электролизе. Получение диэлектрических методом анодного оксидирования. Термическое окисление как способ пассивации, создания защитных диэлектрических покрытий.
- Принцип применения системного анализа при производстве РЭС. Механизм образования соединений пайкой и сваркой. Кинетика процессов флюсования. Электрохимические реакции в процессах сварки. дефекты и механические напряжения в сварных соединениях.

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

 методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы фор-мирования компетенций, согласно п.
 12 рабочей программы.

4.1. Основная литература

- 1. Юрков, Н.К. Технология производства электронных средств. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2014. 480 с. Режим доступа: http://e.lanbook.com/book/41019 Загл. с экрана. [Электронный ресурс]. http://e.lanbook.com/book/41019
- 2. Физико-химические основы технологии электронных средств: Учебное пособие / Иванов А. А., Ряполова Ю. В., Солдаткин В. С. 2017. 307 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6922, свободный.

4.2. Дополнительная литература

- 1. Сушков, А.Д. Вакуумная электроника. Физико-технические основы. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2004. 464 с. Режим доступа: http://e.lanbook.com/book/639 Загл. с экрана. [Электронный ресурс]. http://e.lanbook.com/book/639
- 2. Волков, Ю.С. Электрофизические и электрохимические процессы обработки материалов. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2016. 396 с. Режим доступа: http://e.lanbook.com/book/75505 Загл. с экрана. [Электронный ресурс]. http://e.lanbook.com/book/75505
- 3. Физико-химические основы технологии электронных систем: Учебное пособие / Чикин Е. В. 2006. 209 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/1130, свободный.

4.3. Обязательные учебно-методические пособия

- 1. Физико-химические основы технологии электронных средств: Учебно-методическое пособие для проведения практических занятий и самостоятельной работы / Ряполова Ю. В., Иванов А. А. 2017. 46 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6895, свободный.
- 2. Физико-химические основы технологии электронных средств: Методические указания к лабораторным работам / Ряполова Ю. В., Иванов А. А., Каменкова В. С., Солдаткин В. С. 2017. 88 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6896, свободный.
- 3. Физико-химические основы технологии электронных средств: Методические указания по выполнению курсовой работы / Ряполова Ю. В., Иванов А. А. 2017. 37 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6906, свободный.

4.4. Базы данных, информационно справочные и поисковые системы

- 1. http://www1.fips.ru/wps/wcm/connect/content_ru/ru Федеральный институт промышленной собственности, РОСПАТЕНТ
 - 2. http://elibrary.ru/defaultx.asp eLIBRARY.ru, научная электронная библиотека
 - 3. https://www.google.ru поисковая система Гугл
 - 4. https://edu.tusur.ru научно-образовательный портал ТУСУРа
 - 5. https://e.lanbook.com/ электронная библиотека издательства "Лань"