МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	,	УТВЕРЖДА	Ю	
Дирек	тор д	епартамента	а образо	вания
		Π	I. E. Tpc	HR
~	>>		20	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Надежность светодиодов и светотехнических устройств

Уровень образования: высшее образование - магистратура

Направление подготовки / специальность: **27.04.04 Управление в технических системах** Направленность (профиль) / специализация: **Управление в светотехнических системах**

Форма обучения: очная

Факультет: РКФ, Радиоконструкторский факультет

Кафедра: РЭТЭМ, Кафедра радиоэлектронных технологий и экологического мониторинга

Курс: **1** Семестр: **1**

Учебный план набора 2017 года

Распределение рабочего времени

№	Виды учебной деятельности	1 семестр	Всего	Единицы
1	Лекции	10	10	часов
2	Практические занятия	8	8	часов
3	Лабораторные работы	18	18	часов
4	Всего аудиторных занятий	36	36	часов
5	Самостоятельная работа	36	36	часов
6	Всего (без экзамена)	72	72	часов
7	Общая трудоемкость	72	72	часов
		2.0	2.0	3.E.

Зачет: 1 семестр

Томск 2018

Рассмотрена	и одо	брена на	зас	едании	кафедры
протокол №	58	от « 8	>>	6	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа дисциплины сост	авлена с учетом требований федерального государ его образования (ФГОС ВО) по направлению подго
	в технических системах, утвержденного 30.10.201 федры РЭТЭМ «» 20 года, прото
——— Разработчик:	
Доцент каф. РЭТЭМ	В. С. Солдаткин
Заведующий обеспечивающей каф. РЭТЭМ	В. И. Туев
Рабочая программа дисциплины соглас	сована с факультетом и выпускающей кафедрой:
Декан РКФ	Д. В. Озеркин
Заведующий выпускающей каф. РЭТЭМ	В. И. Туев
Эксперты:	
Профессор каф. РЭТЭМ	А. А. Вилисов
Доцент каф. РЭТЭМ	Н. Н. Несмелова

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Цель изучения дисциплины – приобретение студентами необходимых знаний умений и навыков в части исследования надёжности светодиодов и светотехнических устройств.

1.2. Задачи дисциплины

- Ознакомить студентов с основными механизмами деградации светодиодов и светотехнических устройств.
- Ознакомить студентов с основными методами проведения испытаний светодиодов и светотехнических устройств.
 - Ознакомить студентов с правилами разработки программы и методик испытаний.

_

2. Место дисциплины в структуре ОПОП

Дисциплина «Надежность светодиодов и светотехнических устройств» (Φ ТД.2) относится к блоку Φ ТД.2.

Предшествующими дисциплинами, формирующими начальные знания, являются: Теоретические основы использования полимерных материалов в электронике.

Последующими дисциплинами являются: Технология изготовления светодиодных кристаллов, Технология корпусирования мощных светоизлучающих изделий.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-1 способностью понимать основные проблемы в своей предметной области, выбирать методы и средства их решения;
- ПК-2 способностью применять современные теоретические и экспериментальные методы разработки математических моделей исследуемых объектов и процессов, относящихся к профессиональной деятельности по направлению подготовки;

В результате изучения дисциплины обучающийся должен:

- **знать** Основные механизмы деградации светодиодов и светотехнических устройств. Методики исследования надёжности светодиодов и светотехнических устройств. Основами разработки программы и методик испытаний, оформления анализа и защиты результатов испытаний.
- **уметь** Проводить испытания, анализировать результаты испытаний светодиодов и светотехнических устройств. Разрабатывать и оформлять программу и методик испытаний и результаты испытаний светодиодов и светотехнических устройств.
- **владеть** Навыками проведения испытаний, анализа результатов испытаний светодиодов и светотехнических устройств. Навыками разработки и оформления программы и методик испытаний и результатов испытаний светодиодов и светотехнических устройств.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 2.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		1 семестр
Аудиторные занятия (всего)	36	36
Лекции	10	10
Практические занятия	8	8
Лабораторные работы	18	18
Самостоятельная работа (всего)	36	36
Оформление отчетов по лабораторным работам	12	12

Проработка лекционного материала	12	12
Подготовка к практическим занятиям, семинарам	12	12
Всего (без экзамена)	72	72
Общая трудоемкость, ч	72	72
Зачетные Единицы	2.0	2.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лек., ч	Прак. зан., ч	Лаб. раб., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
	1 cer	местр				
1 Механизмы деградации светодиодов и светотехнических устройств	4	2	0	8	14	ОПК-1, ПК-2
2 Прогнозирование срока службы светодиодов и светодиодных излучающих элементов расчётным методом	4	4	9	14	31	ОПК-1, ПК-2
3 Рекомендации к составлению программ и методик испытаний светодиодных излучающих элементов и разработке технических условий	2	2	9	14	27	ОПК-1, ПК-2
Итого за семестр	10	8	18	36	72	
Итого	10	8	18	36	72	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины по лекциям	Трудоемкость, ч	Формируемые компетенции
	1 семестр		
1 Механизмы деградации светодиодов и светотехнических	Физико-химические процесс деградации светодиодов. Деградация омических контактов. Деградация люминофорной композиции.	4	ОПК-1, ПК-2
устройств	Итого	4	
2 Прогнозирование срока службы светодиодов и светодиодных излучающих элементов	Отечественные и зарубежные стандарты по прогнозированию срока службы светодиодов и светотехнических устройств. Определение энергии активации отказов светодиодов. Надёжность устройств питания светодиодов.	4	ОПК-1, ПК-2
расчётным методом	Итого	4	

3 Рекомендации к составлению программ и методик испытаний светодиодных излучающих элементов и разработке	Основы составления программы и методик испытаний. Методики измерения светотехнических, колориметрических и электрических характеристик светодиодов и светотехнических устройств. Требования к испытательному и измерительному оборудованию.	2	ОПК-1, ПК-2
технических условий	Итого	2	
Итого за семестр		10	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

	тионици в за тиодения дисцииний и междисцииниции в в вып				
Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин				
	1	2	3		
Предшествующие дисциплины					
1 Теоретические основы использования полимерных материалов в электронике	+	+	+		
Последующие дисциплины					
1 Технология изготовления светодиодных кристаллов	+	+	+		
2 Технология корпусирования мощных светоизлучающих изделий	+	+	+		

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

ии		Виды з	анятий		
Компетенции	Лек.	Прак. зан.	Лаб. раб.	Сам. раб.	Формы контроля
ОПК-1	+	+	+	+	Отчет по лабораторной работе, Опрос на занятиях, Тест, Отчет по практическому занятию
ПК-2	+	+	+	+	Отчет по лабораторной работе, Опрос на занятиях, Тест, Отчет по практическому занятию

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

таолица /.т ттаимспова	пис лаобраторных работ		
Названия разделов	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	1 семестр		
2 Прогнозирование	Проведение испытаний светодиодов	9	ОПК-1,
срока службы светодиодов и светодиодных излучающих элементов расчётным методом	Итого	9	ПК-2
3 Рекомендации к составлению программ и методик испытаний	Измерение основных параметров светодиодов до и после испытаний в соответствии программой и методиками	9	ОПК-1, ПК-2
светодиодных излучающих элементов и разработке технических условий	Итого	9	
Итого за семестр		18	

8. Практические занятия (семинары) Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	1 семестр		
1 Механизмы деградации светодиодов	Анализ дефектов светодиодов и светотехнических устройств.	2	ОПК-1, ПК-2
и светотехнических устройств	Итого	2	
2 Прогнозирование срока службы	Прогнозирование срока службы светодиода в зависимости от тепловых и электрических режимов	4	ОПК-1, ПК-2
светодиодов и светодиодных излучающих элементов расчётным методом	Итого	4	
3 Рекомендации к составлению программ	Разработка программы и методики испытания светодиодов и светотехнических устройств	2	ОПК-1, ПК-2
и методик испытаний светодиодных излучающих элементов и разработке технических условий	Итого	2	
Итого за семестр		8	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

таолица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции				
Названия разделов	Виды самостоятельной работы	Трудоемкость, ч	Формируемые компетенции	Формы контроля
	1 семест	p		
1 Механизмы деградации светодиодов и светотехнических	Подготовка к практиче- ским занятиям, семина- рам	4	ОПК-1, ПК-2	Опрос на занятиях, Отчет по практическому занятию, Тест
устройств	Проработка лекционного материала	4		
	Итого	8		
2 Прогнозирование срока службы светодиодов и светодиодных излучающих элементов расчётным методом	Подготовка к практиче- ским занятиям, семина- рам	4	ОПК-1, ПК-2	Опрос на занятиях, От- чет по лабораторной ра- боте, Отчет по практиче-
	Проработка лекционного материала	4		скому занятию, Тест
	Оформление отчетов по лабораторным работам	6		
	Итого	14		
3 Рекомендации к составлению программ и методик испытаний	Подготовка к практическим занятиям, семинарам	4	ОПК-1, ПК-2	Опрос на занятиях, Отчет по лабораторной работе, Отчет по практиче-
светодиодных излучающих элементов и разработке технических условий	Проработка лекционного материала	4	скому занятию, Т	скому занятию, Тест
	Оформление отчетов по лабораторным работам	6		
	Итого	14		
Итого за семестр		36		
Итого		36		

10. Курсовая работа (проект)

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр	
1 семестр					
Опрос на занятиях	5	5	5	15	

Отчет по лабораторной работе	10	20	10	40
Отчет по практическому занятию	10	10	10	30
Тест	5	5	5	15
Итого максимум за период	30	40	30	100
Нарастающим итогом	30	70	100	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (хорошо) (зачтено)	85 - 89	В (очень хорошо)
	75 - 84	С (хорошо)
	70 - 74	D (vyzony oznowy za wy vo)
3 (удовлетворительно) (зачтено)	65 - 69	D (удовлетворительно)
	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Надежность светодиодов и светотехнических устройств: Учебное пособие / Солдаткин В. С. 2017. 31 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6744 (дата обращения: 15.06.2018).
- 2. Технология сборки и монтажа мощных светоизлучающих изделий: Учебное пособие / Туев В. И., Солдаткин В. С., Вилисов А. А., Старосек Д. . 2016. 48 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6600 (дата обращения: 15.06.2018).

12.2. Дополнительная литература

- 1. Полупроводниковая светотехника: Учебное пособие для студентов, обучающихся по направлению подготовки 211000.62 Конструирование и технология электронных средств / Туев В. И., Солдаткин В. С., Вилисов А. А. 2015. 46 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/5458 (дата обращения: 15.06.2018).
 - 2. Физика полупроводниковых приборов : пер. с англ.: В 2 кн. / С. М. Зи; Пер. В. А. Гер-

гель, Пер. Н. В. Зыков, Пер. Р. З. Хафизов, Ред. Пер. Р. А. Сурис. - 2-е изд., перераб. и доп. - М. : Мир, 1984 - Кн. 2. - М. : Мир, 1984. - 456 с. (наличие в библиотеке ТУСУР - 15 экз.)

3. Физические основы оптоэлектроники: Учебное пособие / Давыдов В. Н. - 2016. 139 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/5963 (дата обращения: 15.06.2018).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

1. Надежность светодиодов и светотехнических устройств: Учебно-методическое пособие для проведения практических, лабораторных и самостоятельных занятий / Солдаткин В. С. - 2017. 39 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/6741 (дата обращения: 15.06.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

- 1. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru/
- 2. Научно-образовательный портал ТУСУР https://edu.tusur.ru
- 3. Электронно-библиотечная система "Лань" http://e.lanbook.com

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Лаборатория технологии РЭС и безопасности жизнедеятельности учебная аудитория для проведения занятий лабораторного типа 634050, Томская область, г. Томск, Ленина проспект, д. 40, 419 ауд. Описание имеющегося оборудования:

- АРМ инженера (2 шт.);
- АРМ инженера исследователя;
- Цифровой мультиметр MXD-4660A (2 шт.);
- Вольтметр В7-78;
- ПЭВМ пентиум CELERON 433 MMX;
- Доска маркерно-меловая;

- Дымоуловитель QUICK 493A ESD (5 шт.);
- Измеритель светового потока «ТКА-КК1;
- Ионизатор воздуха QUICK 440 (2 шт.);
- Источник питания Matrix MPS-3003 LK-3 (3 шт.);
- Компьютер Intel Core;
- Компьютер Intel Pentium;
- Корпусный шкаф 4200х600х2100мм;
- Гониофотометр;
- Спектрофлуориметр СМ2203;
- Вентиляционная система:
- Монтажный стол БЕЛВАР С4-1400 (4 шт.);
- Монтажный стол БЕЛВАР С4-1800;
- Микроскоп МБС-10;
- Установка для демонстрации силы Лоренца U30065;
- Цифровой Мультиметр АРРА 103;
- Латр;
- Микрометр (2 шт.);
- Мультиметр цифровой;
- Радиатор масляный 9 секций;
- Измеритель E7 22 RLC;
- Монтажно-демонтажная станция АМИ 6800;
- Источник питания TDGC -2 2K 0-250 V 8A (Латр);
- Кабельная продукция HB-A150 BNC 1,5 m;
- Прибор BNC IC Соединительные кабели;
- Измеритель мощности GPM -8212RS;
- Прибор PTL-923;
- Осциллограф LeCrou WA 222;
- Частотомер GFC-8010H 1 Гц-120МГц GW;
- Инфракрасный дистанционный термометр UT30A;
- Латр трансформатор TDGC2-3K;
- Осциллограф FLUKE-190-062;
- Паяльная станция (3 шт.);
- Цифровой мультиметр FLUKE-18B FLK;
- Компьютер Intel Core i5-6400 (3 шт.);
- МФУ hp "LaserJet ProV227sdnG3Q74A";
- Стол лабораторный;
- Цифровой комплекс учебно-научных лабораторий ГПО;
- Виртуальная лаборатория АСК-4106 (2 шт.);
- Цифровая перенастраиваемая установка микросварки проволочных выводов для изготовления макетных образцов основных узлов светодиодных ламп;
- Источник измеритель Keithley 2410;
- Измеритель ёмкости S-line EM8601A+/CM8601 (3 шт.);
- Источник питания HY3005D MAST (3 шт.);
- Myльтиметр DM3058E RIGOL;
- Осциллограф DS1052E RIGOL (2 шт.);
- Частотометр VC3165 Victor (3 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- ANSYS AIM Pro Paid-Up
- Adobe Acrobat Reader
- Autodesk Product Design Suite Premium 2018
- Google Chrome

- Kaspersky Endpoint Security 10 для Windows
- Microsoft Windows XP
- OpenOffice
- Resource Manager 2.5
- TracePro LC Single User NODE License Annual Maintenance and Support for NODE License (Nothing to Ship)
 - Компас 3D V17

13.1.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория технологии РЭС и безопасности жизнедеятельности учебная аудитория для проведения занятий лабораторного типа 634050, Томская область, г. Томск, Ленина проспект, д. 40, 419 ауд. Описание имеющегося оборудования:

- APM инженера (2 шт.);
- АРМ инженера исследователя;
- Цифровой мультиметр MXD-4660A (2 шт.);
- Вольтметр В7-78;
- ПЭВМ пентиум CELERON 433 MMX;
- Доска маркерно-меловая;
- Дымоуловитель QUICK 493A ESD (5 шт.);
- Измеритель светового потока «ТКА-КК1;
- Ионизатор воздуха QUICK 440 (2 шт.);
- Источник питания Matrix MPS-3003 LK-3 (3 шт.);
- Компьютер Intel Core;
- Компьютер Intel Pentium;
- Корпусный шкаф 4200х600х2100мм;
- Гониофотометр;
- Спектрофлуориметр СМ2203;
- Вентиляционная система:
- Монтажный стол БЕЛВАР С4-1400 (4 шт.);
- Монтажный стол БЕЛВАР С4-1800;
- Микроскоп МБС-10;
- Установка для демонстрации силы Лоренца U30065;
- Цифровой Мультиметр АРРА 103;
- Латр;
- Микрометр (2 шт.);
- Мультиметр цифровой;
- Радиатор масляный 9 секций;
- Измеритель E7 22 RLC;
- Монтажно-демонтажная станция АМИ 6800:
- Источник питания TDGC -2 2K 0-250 V 8A (Латр);
- Кабельная продукция HB-A150 BNC 1,5 m;
- Прибор BNC IC Соединительные кабели;
- Измеритель мощности GPM -8212RS;
- Прибор PTL-923;
- Осциллограф LeCrou WA 222;
- Частотомер GFC-8010H 1 Гц-120МГц GW;
- Инфракрасный дистанционный термометр UT30A;
- Латр трансформатор TDGC2-3K;
- Осциллограф FLUKE-190-062;
- Паяльная станция (3 шт.);
- Цифровой мультиметр FLUKE-18B FLK;
- Компьютер Intel Core i5-6400 (3 шт.);

- MΦY hp ''LaserJet ProV227sdnG3Q74A'';
- Стол лабораторный;
- Цифровой комплекс учебно-научных лабораторий ГПО;
- Виртуальная лаборатория АСК-4106 (2 шт.);
- Цифровая перенастраиваемая установка микросварки проволочных выводов для изготовления макетных образцов основных узлов светодиодных ламп;
- Источник измеритель Keithley 2410;
- Измеритель ёмкости S-line EM8601A+/CM8601 (3 шт.);
- Источник питания HY3005D MAST (3 шт.);
- Мультиметр DM3058E RIGOL;
- Осциллограф DS1052E RIGOL (2 шт.);
- Частотометр VC3165 Victor (3 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- ANSYS AIM Pro Paid-Up
- Adobe Acrobat Reader
- Autodesk Product Design Suite Premium 2018
- Google Chrome
- Kaspersky Endpoint Security 10 для Windows
- Microsoft Windows XP
- OpenOffice
- Resource Manager 2.5
- TracePro LC Single User NODE License Annual Maintenance and Support for NODE License (Nothing to Ship)
 - Компас 3D V17

13.1.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

- 1. Коэффициент сохранения светового потока?
- А. Отношение значения светового потока светодиода в заданное время к его начальному значению, выраженное в процентах.
 - Б. Период времени, в течение которого светодиод обеспечивает более 50%.
 - В. Период времени, в течение которого светодиод обеспечивает более 70%.
 - Г. Время, необходимое для достижения стабильного светового потока светодиода.
 - 2. Срок службы светодиода?
- А. Период времени, в течение которого светодиод обеспечивает более 50% (или альтернативно 70%) номинального светового потока при стандартных условиях испытания.
- Б. Отношение значения светового потока светодиода в заданное время к его начальному значению, выраженное в процентах.
 - В. Время, необходимое для достижения стабильного светового потока светодиода.
 - Г. Период предварительной выдержки светодиода при испытаниях и измерениях.
 - 3. Интенсивность отказов?
- А. Процент испытанных светодиодов одного типа, каждая из которых достигла конца срока службы.
- Б. Отношение значения светового потока светодиода в заданное время к его начальному значению, выраженное в процентах.
 - В. Время, необходимое для достижения стабильного светового потока светодиода.
 - Г. Период предварительной выдержки светодиода при испытаниях и измерениях.
 - 4. Испытание типа?
- А. Испытание или серия испытаний, проводимые на выборке для испытания типа в целях проверки соответствия конструкции данного изделия требованиям настоящего стандарта.
- Б. Процент испытанных светодиодов одного типа, каждая из которых достигла конца срока службы.
- В. Выборка, состоящая из одного или нескольких подобных изделий, представленная изготовителем или ответственным поставщиком для испытаний типа.
 - Г. Период предварительной выдержки ламп при испытаниях и измерениях.
 - 5. Цветовой код?
- А. Цветовые характеристики светодиодной лампы белого света, определяемые коррелированной цветовой температурой и индексом цветопередачи.
- Б. Температура черного тела, при которой координаты цветности его излучения близки в пределах заданного допуска к координатам цветности рассматриваемого излучения на цветовом графике МКО.

- В. Мера соответствия зрительных восприятий цветного объекта, освещенного исследуемым и стандартным источниками света при определенных условиях наблюдения.
- Г. Критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током.
 - 6. Коррелированная цветовая температура?
- А. Температура черного тела, при которой координаты цветности его излучения близки в пределах заданного допуска к координатам цветности рассматриваемого излучения на цветовом графике МКО.
- Б. Критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током.
- В. Цветовые характеристики светодиодной лампы белого света, определяемые коррелированной цветовой температурой и индексом цветопередачи.
- Г. Мера соответствия зрительных восприятий цветного объекта, освещенного исследуемым и стандартным источниками света при определенных условиях наблюдения.
 - 7. Индекс цветопередачи?
- А. Мера соответствия зрительных восприятий цветного объекта, освещенного исследуемым и стандартным источниками света при определенных условиях наблюдения.
- Б. Температура черного тела, при которой координаты цветности его излучения близки в пределах заданного допуска к координатам цветности рассматриваемого излучения на цветовом графике МКО.
- В. Цветовые характеристики светодиодной лампы белого света, определяемые коррелированной цветовой температурой и индексом цветопередачи.
- Г. Критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током.
 - 8. Световой поток?
- А. Физическая величина, определяемая отношением световой энергии, переносимой излучением, ко времени переноса, значительно превышающему периоду электромагнитных колебаний.
 - Б. Мощность лучистой энергии.
- В. Мощность видимого светового излучения, которое оценивается по зрительному ощущению.
- Г. Физическая величина, характеризующая величину световой энергии, переносимой в некотором направлении в единицу времени.
 - 9. На каком оборудовании проводится измерение распределения силы света?
 - А. На гониофотометре.
 - Б. На спектроколориметре.
 - В. На рефлектометре.
 - Г. На оптиметре.
- 10. Как проводятся испытания на циклическое изменение температуры встроенного устройства управления светодиодной лампы?
- А. Лампу без подачи напряжения выдерживают при температуре минус $10\,^{\circ}\mathrm{C}$ в течение $1\,^{\circ}\mathrm{L}$ Затем сразу лампу перемещают в камеру с температурой $40\,^{\circ}\mathrm{L}$ и выдерживают в течение $1\,^{\circ}\mathrm{L}$. Должно быть выполнено пять таких циклов.
- Б. Лампу под напряжением выдерживают при температуре минус $10~^{\circ}$ С в течение $2~^{\circ}$ С. Затем сразу лампу перемещают в камеру с температурой $40~^{\circ}$ С и выдерживают в течение $2~^{\circ}$ С. Должно быть выполнено пять таких циклов.
- В. Лампу без подачи напряжения выдерживают при температуре минус 20 °C в течение 1 ч. Затем сразу лампу перемещают в камеру с температурой 50 °C и выдерживают в течение 1 ч. Должно быть выполнено десять таких циклов.
- Γ . Лампу под напряжением выдерживают при температуре минус 20 °C в течение 2 ч. Затем сразу лампу перемещают в камеру с температурой 50 °C и выдерживают в течение 2 ч. Должно быть выполнено десять таких циклов.
 - 11. Форсированные испытания?
- А. Ускоренные испытания, основанные на интенсификации деградационных процессов, приводящих к отказу (предельному состоянию).

- Б. Режим функционирования изделия, предусмотренный методом ускоренных испытаний.
- В. Режим функционирования изделия, параметры которого находятся в пределах, установленных в технической документации для нормальных условий испытаний.
- Г. Режим функционирования изделия, параметры которого находятся в пределах, установленных в технической документации для условий форсированных испытаний.
 - 12. Коэффициент ускорения?
- А. Отношение математических ожиданий продолжительности нормальных и ускоренных испытаний.
- Б. Ускоренные испытания, основанные на интенсификации деградационных процессов, приводящих к отказу (предельному состоянию).
- В. Режим функционирования изделия, параметры которого находятся в пределах, установленных в технической документации для нормальных условий испытаний.
- Г. Режим функционирования изделия, параметры которого находятся в пределах, установленных в технической документации для условий форсированных испытаний.
 - 13. Принцип ускорения испытаний?
- А. Совокупность теоретических и экспериментальных закономерностей или обоснованных допущений, на основе использования которых достигается сокращение продолжительности испытаний.
 - Б. Правила применения принципов ускорения и средств испытаний.
- В. Отношение математических ожиданий продолжительности нормальных и ускоренных испытаний.
- Г. Ускоренные испытания, основанные на интенсификации деградационных процессов, приводящих к отказу (предельному состоянию).
 - 14. Вероятность отказа?
- А. Вероятность того, что изделие откажет или что попытка окажется неудачной в заданных условиях.
- Б. Условия испытаний, при которых схема внешних воздействий и рабочих нагрузок очень близко совпадает с теми, которые изделия испытывают в процессе реальной эксплуатации.
- В. Отказ, о котором поступило сообщение, но который не может быть воспроизведен или объяснен на основе текущего состояния изделия.
- Г. Отказ, подлежащий учету при интерпретации результатов испытаний или эксплуатации изделий или в расчетах их показателей безотказности.
 - 15. Испытания на безотказность?
- А. Эксперимент, проводимый с целью измерения, количественной оценки или классификации показателей безотказности.
- Б. Ускоренные испытания, основанные на интенсификации деградационных процессов, приводящих к отказу (предельному состоянию).
- В. Испытания, проводимые для определения показателей надежности продукции в заданных условиях.
- Г. Испытания, проводимые на различных стадиях жизненного цикла изделия, с целью установления его соответствия требованиям нормативных документов.
 - 16. Квалификационные испытания?
- А. Контрольные испытания установочной серии или первой промышленной партии, проводимые с целью оценки готовности предприятия к выпуску изделия данного типа.
- Б. Контрольные испытания, проводимые с целью оценки эффективности и целесообразности вносимых изменений в конструкцию, технологический процесс, а также при изменении условий применения или технических характеристик изделия.
- В. Контрольные испытания выпускаемой продукции, проводимые в объемах и в сроки, установленные нормативной документацией, с целью контроля стабильности качества продукции и возможности продолжения ее выпуска.
 - Г. Контрольные испытания серийно выпускаемой продукции при приемочном контроле.
 - 17. Испытания со ступенчатым нагружением?
- А. Испытания, состоящие из нескольких последовательных периодов равной продолжительности в постепенно утяжеляемых нагрузочных условиях.

- Б. Контрольные испытания по подтверждению соответствия изделий требованиям проектной документации, проводимые в условиях эксплуатации.
 - В. Контрольные испытания серийно выпускаемой продукции при приемочном контроле.
- Г. Контрольные испытания выпускаемой продукции, проводимые в объемах и в сроки, установленные нормативной документацией, с целью контроля стабильности качества продукции и возможности продолжения ее выпуска.
 - 18. Программа и методика испытаний?
- А. Документ, устанавливающий цели испытаний (например оценка или проверка показателей безотказности, сравнение вариантов конструкции по безотказности), требования и возможные ограничения по продолжительности испытаний, применяемому испытательному оборудованию или числу испытываемых образцов. ПМ могут также устанавливать место проведения испытаний (лабораторные или эксплуатационные), возможность и допустимость восстановления, ремонта отказавших при испытаниях образцов.
- Б. Совокупность конструкторских документов, содержащих данные, необходимые для проектирования (разработки), изготовления, контроля, приемки, поставки, эксплуатации, ремонта, модернизации, утилизации изделия.
- В. Совокупность технологических документов, которые отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия.
- Г. Комплект документов, отражающих объективную информацию о содержании и результатах НИР (этапов НИР), а также содержащих рекомендации по ее использованию.
- 19. К каким испытаниям относятся испытания, проводимые для изучения определенных характеристик свойств объекта?
 - А. Исследовательские испытания.
 - Б. Приёмочные испытания.
 - В. Квалификационный испытания.
 - Г. Технологические испытания.
 - 20. Конструкторская документация?
- А. Совокупность конструкторских документов, содержащих данные, необходимые для проектирования (разработки), изготовления, контроля, приемки, поставки, эксплуатации, ремонта, модернизации, утилизации изделия.
- Б. Совокупность технологических документов, которые отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия.
- В. Документы, предназначенные для организации и выполнения работ, обеспечивающих проведение испытаний конкретного объекта и устанавливающие правила реализации методов испытаний.
- Г. Комплект документов, отражающих объективную информацию о содержании и результатах НИР (этапов НИР), а также содержащих рекомендации по ее использованию.

14.1.2. Вопросы для подготовки к практическим занятиям, семинарам

Анализ дефектов светодиодов и светотехнических устройств.

Прогнозирование срока службы светодиода в зависимости от тепловых и электрических режимов

Разработка программы и методики испытания светодиодов и светотехнических устройств

14.1.3. Темы опросов на занятиях

Физико-химические процесс деградации светодиодов.

Деградация омических контактов.

Деградация люминофорной композиции.

Отечественные и зарубежные стандарты по прогнозированию срока службы светодиодов и светотехнических устройств.

Определение энергии активации отказов светодиодов.

Надёжность устройств питания светодиодов.

Основы составления программы и методик испытаний.

Методики измерения светотехнических, колориметрических и электрических характеристик светодиодов и светотехнических устройств.

Требования к испытательному и измерительному оборудованию.

14.1.4. Темы лабораторных работ

Проведение испытаний светодиодов

Измерение основных параметров светодиодов до и после испытаний в соответствии программой и методиками

14.1.5. Зачёт

Основы составления программы и методик испытаний.

Методики измерения светотехнических, колориметрических и электрических характеристик светодиодов и светотехнических устройств.

Требования к испытательному и измерительному оборудованию.

Отечественные и зарубежные стандарты по прогнозированию срока службы светодиодов и светотехнических устройств.

Определение энергии активации отказов светодиодов.

Надёжность устройств питания светодиодов.

Физико-химические процесс деградации светодиодов.

Деградация омических контактов.

Деградация люминофорной композиции.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями

здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;

- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.