МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	`	УТВЕР	ЖДАН	С		
Дирек	тор д	епарта	мента	образо	ван	ИЯ
			П.	Е. Тро	нк	
~	>>			20	Γ.	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Статистическая теория радиотехнических систем

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.01 Радиотехника

Направленность (профиль) / специализация: Радиотехнические средства передачи, приема и

обработки сигналов

Форма обучения: очная

Факультет: РТФ, Радиотехнический факультет

Кафедра: ТОР, Кафедра телекоммуникаций и основ радиотехники

Курс: **3** Семестр: **5**

Учебный план набора 2016 года

Распределение рабочего времени

№	Виды учебной деятельности	5 семестр	Всего	Единицы
1	Лекции	32	32	часов
2	Практические занятия	48	48	часов
3	Всего аудиторных занятий	80	80	часов
4	Самостоятельная работа	28	28	часов
5	Всего (без экзамена)	108	108	часов
6	Подготовка и сдача экзамена	36	36	часов
7	Общая трудоемкость	144	144	часов
		4.0	4.0	3.E.

омск 2018

Экзамен: 5 семестр

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Шелупанов А.А. Должность: Ректор

Дата подписания: 23.08.2017 Уникальный программный ключ: c53e145e-8b20-45aa-9347-a5e4dbb90e8d

Рассмотрена	и одо	брена	на за	аседании	кафедры	П
протокол №	11	OT «_	26_»	6	2018	Γ.

ЛИСТ СОГЛАСОВАНИЯ

государственного образовательного стан подготовки (специальности) 11.03.01 Рад	ны составлена с учетом требований федерального ндарта высшего образования (ФГОС ВО) по направлению диотехника, утвержденного $06.03.2015$ года, рассмотрена и $26_{\sim} 06_{\sim} 2018_{\sim}$ года, протокол $06_{\sim} 11_{\sim}$.
Разработчик:	
профессор кафедры каф. РТС	В. И. Тисленко
Заведующий обеспечивающей каф. РТС	С. В. Мелихов
Рабочая программа дисциплины с	согласована с факультетом и выпускающей кафедрой:
Декан РТФ	К. Ю. Попова
Заведующий выпускающей каф. ТОР	А. А. Гельцер
Эксперты:	
Доцент кафедры радиотехнических систем (РТС)	В. А. Громов
Доцент кафедры	
телекоммуникаций и основ радиотехники (TOP)	С. И. Богомолов

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Цель курса состоит

в изучении основ статистической теории синтеза оптимальных устройств обработки при решении задач различения, обнаружения и оценки параметров полезных сигналов при наличии помех в системах радиосвязи, радиолокации, радионавигации;

в изучении способов обработки сигналов и помех в устройствах обнаружения, различения и оценки неизвестных параметров сигналов при наличии помехи в виде собственного шума приемника.

1.2. Задачи дисциплины

- изучить статистическую методологию описания случайных сигналов;
- изучить статистические свойства и характеристики смеси регулярного сигнала и гауссовского шума;
- изучить взаимосвязь параметров регулярного сигнала и его частотно временной корреляционной функции;
- изучить характеристики линейного согласованного фильтра и принципы его построения для типовых сигналов;
- изучить характеристики и устройства оптимального различения (обнаружения) сигнала на фоне шума;
- изучить способы построения и алгоритмы обработки сигналов в оптимальных устройствах оценки параметров сигнала

2. Место дисциплины в структуре ОПОП

Дисциплина «Статистическая теория радиотехнических систем» (Б1.В.ОД.9) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются Радиотехнические цепи и сигналы.

Последующими дисциплинами являются: Многоканальные цифровые системы передачи, Радиотехнические системы.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-5 способностью использовать основные приемы обработки и представления экспериментальных данных;
- ПК-4 способностью проводить предварительное технико-экономическое обоснование проектов радиотехнических устройств и систем;

В результате изучения дисциплины обучающийся должен:

- знать физический смысл статистических характеристик случайных сигналов; взаимосвязь параметров полезного сигнала и параметров его частотно-временной корреляционной функции; постановку и методологию решения задач статистического синтеза оптимальных систем различения, обнаружения и оценки параметров радиосистемах связи, локации и навигации; типовые структуры статистически оптимальных устройств различения, обнаружения и оценки параметров радиосигналов на фоне белого гауссовского шума;
- **уметь** изложить постановку задачи синтеза оптимальных устройств обнаружения, различения и оценки параметров сигналов на фоне шума в терминах статистической теории проверки гипотез и теории оценок; представить обобщенные структурные схемы обнаружителя и различителя детерминированных сигналов и пояснить их работу; оценить влияние параметров радиосигнала и гауссовской помехи на потенциальные помехоустойчивости и точности систем радиосвязи, локации и навигации.
- владеть существующей в среде специалистов терминологией для статистической описания свойств сигналов и помех на основе методов статистической радиотехники

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4.0 зачетных единицы и представлена в

таблице 4.1. Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		5 семестр
Аудиторные занятия (всего)	80	80
Лекции	32	32
Практические занятия	48	48
Самостоятельная работа (всего)	28	28
Проработка лекционного материала	13	13
Подготовка к практическим занятиям, семинарам	15	15
Всего (без экзамена)	108	108
Подготовка и сдача экзамена	36	36
Общая трудоемкость, ч	144	144
Зачетные Единицы	4.0	4.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Гаолица 5.1 – Разделы дисциплины и виды занятии							
Названия разделов дисциплины	Ле к., ч	ра К. 3а	м. ра б.,	в (6 ез	M M KO KO		
	5 семестр)					
1 Математические модели сигналов и помех в радиотехнических системах	8	12	7	27	ОПК-5, ПК-4		
2 Основы статистической теории обнаружения и различения сигналов на фоне помехи	12	17	11	40	ОПК-5, ПК-4		
3 Основы статистической теории оценок неизвестных параметров сигнала при наличии помех. Разрешение сигналов по параметрам.	12	19	10	41	ОПК-5, ПК-4		
Итого за семестр	32	48	28	108			
Итого	32	48	28	108			

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины (по лекциям)	oe MK	M bie	КО
	5 семестр			
1 Математические модели сигналов и помех в радиотехнических системах	Классификация сигналов и сообщений. Функция различия сигналов. Частотно-временная корреляционная функция узкополосного радиосигнала и ее структура. Функция неопределенности радиосигнала и связь ее параметров с параметрами радиосигнала. Принцип неопределенности. Примеры функций неопределенности простых и сложных	8	ОПК-5, ПК-4	

2 Основы статистической теории обнаружения и различения сигналов на фоне помехи	импульсных сигналов. Стационарная гауссовская случайная помеха. Белый шум. Статистические свойства огибающей и фазы смеси регулярного сигнала и гауссовской помехи. Радиоканал и его свойства. Модель сигнала в однолучевом и многолучевом каналах. Пространственные частотные и временные искажения структуры электромагнитного поля в месте приема. Гауссовская модель полезного сигнала в многолучевом канале. Итого Общая характеристика задач статистической теории РТС. Согласованный линейный фильтр: импульсная реакция и комплексная частотная характеристика согласованного фильтра; форма сигнала на выходе и отношение уровней сигнала к шуму на выходе согласованного фильтра. Примеры построения согласованных фильтров: фильтр для прямоугольного радиоимпульса с прямоугольной огибающей; для прямоугольного радиоимпульса с фазокодовой манипуляцией (ФКМ), фильтр для пачки когерентных радиоимпульсов. Байесовская теория синтеза оптимального приемника – различителя (обнаружителя) сигнала при наличии помех: функция потерь; средний байесов риск; отношение правдоподобия. Структура оптимального приемника — различителя (обнаружителя) детерминированного сигнала на фоне белого гауссова шума: корреляционный приемник и приемник с согласованным фильтром. Статистические характеристика качества различения и обнаружения.	8 12	ОПК-5
2.0			ОПИ 5
з Основы статистической теории оценок неизвестных параметров сигнала при наличии помех. Разрешение сигналов по параметрам.	Оценки параметров сигналов и их свойства. Байесовская теория оценок: функция потерь; байесовский риск; оптимальные байесовские оценки. Функция правдо-подобия и максимально правдоподобные оценки. Совместные оценки. Метод наименьших квадратов: оператор оценки в линейных моделях; статистические свойства оценок МНК. Примеры оценок неизвестных параметров. Общая структурная схема оптимального измерителя параметра сигнала известной формы. Статистические характеристики (среднее и дисперсия) максимально правдоподобной оценки параметра сигнала при большом отношении уровня сигнала к шуму. Оптимальная оценка амлитуды и начальной фазы регулярного сигнала. Информация по Фишеру. Неравенство Крамера — Рао.	12	ОПК-5

Итого за семестр		32	
------------------	--	----	--

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин					
	1	2	3			
Предшествующие дис	циплины					
1 Радиотехнические цепи и сигналы	+	+	+			
Последующие дисциплины						
1 Многоканальные цифровые системы передачи	+	+	+			
2 Радиотехнические системы	+	+	+			

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

лци п		Виды занятий		Форман момпрома
Компе тенци и	Ле к.	П ра к. за н.	Са м. ра б.	Формы контроля
ОПК-5	+	+	+	Домашнее задание, Экзамен, Конспект самоподготовки, Опрос на занятиях, Зачет, Тест
ПК-4	+	+	+	Домашнее задание, Экзамен, Конспект самоподготовки, Опрос на занятиях, Зачет, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Не предусмотрено РУП.

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Наименование практических занятий (семинаров)	e i	본 ²	re re	60
пазвания разделов	паименование практических занятии (семинаров)	, 0	2 0	, ~ .Q	×
1 Математические модели сигналов и помех в радиотехнических системах	Функция различия сигналов. Частотно-временная корреляционная функция узкополосного сигнала. Функция неопределенности сигнала. Принцип неопределенности в радиолокации. Статистические свойства сигналов и помех. Распределение вероятностей огибающей и фазы смеси сигнала и гауссовского шума. Экспериментальная оценка характеристик случайных сигналов.		2	ОПК-5	

	Итого	12	
2 Основы статистической теории обнаружения и различения сигналов на	Согласованный линейный фильтр. Корреляционный приемник. Оптимальный байесовский различитель (обнаружитель) — структура и характеристики качества.	17	ПК-4
фоне помехи	Итого	17	
3 Основы статистической теории оценок неизвестных	Байесовская теория оценок. Оценки максимального правдоподобия. Оценки по методу наименьших квадратов. Свойства оценок.	19	ПК-4
параметров сигнала при наличии помех. Разрешение сигналов по параметрам.	Итого	19	
Итого за семестр		48	

9. Самостоятельная работа
Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в

Таблица 9 1 Вилы самостоятельной работы трудоемкость и формируемые компетенции

<u> 1аолица 9.1 – Виды самос</u>	тоятельной работы, трудоег	мкость и	<u>и формируе</u>	мые компетенции
Названия разделов	Виды самостоятельной работы	1PYA OEMK OCTЬ,	миру емые комп	Формы контроля
	5 семест	<u>p</u>		
1 Математические модели сигналов и помех в	Подготовка к практическим занятиям, семинарам	4	ОПК-5	Домашнее задание, Опрос на занятиях, Тест, Экзамен
радиотехнических системах	Проработка лекционного материала	3		
	Итого	7		
2 Основы статистической теории обнаружения и	Подготовка к практическим занятиям, семинарам	6	ПК-4	Домашнее задание, Опрос на занятиях, Тест, Экзамен
различения сигналов на фоне помехи	Проработка лекционного материала	5		
	Итого	11		
3 Основы статистической теории оценок неизвестных	Подготовка к практическим занятиям, семинарам	5	ПК-4	Домашнее задание, Опрос на занятиях, Тест, Экзамен
параметров сигнала при наличии помех. Разрешение сигналов по	Проработка лекционного материала	5		
параметрам.	Итого	10		
Итого за семестр		28		
	Подготовка и сдача экзамена	36		Экзамен
Итого		64		

10. Курсовой проект / курсовая работа

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
	5	семестр		
Домашнее задание	7	7	12	26
Конспект самоподготовки	6	6	6	18
Опрос на занятиях	8	8	10	26
Итого максимум за период	21	21	28	70
Экзамен				30
Нарастающим итогом	21	42	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (vwop wormony vo)
2 (унаристратитани на) (заутана)	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Статистические методы обработки сигналов в радиотехнических системах: Учебное пособие / Тисленко В. И. - 2007. 245 с. [Электронный ресурс] - Режим доступа: http://edu.tusur.ru/publications/2123 (дата обращения: 29.06.2018).

12.2. Дополнительная литература

- 1. Перов А.И. Статистическая теория радиотехнических систем. Учебное пособие для вузов. М.: Радиотехника, 2003. 398 с. (наличие в библиотеке ТУСУР 21 экз.)
- 2. Липкин И.А. Основы статистической радиотехники, теории информации и кодирования. М.: Сов. радио, 1978. 235 с. (наличие в библиотеке ТУСУР 19 экз.)

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

1. Статистическая теория радиотехнических систем: Учебно-методическое пособие по практическим занятиям и организации самостоятельной работы по курсу / Тисленко В. И. - 2011. 43 с. [Электронный ресурс] - Режим доступа: http://edu.tusur.ru/publications/2120 (дата обращения: 29.06.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется использовать базы данных, информационносправочные и поисковые системы, к которым у ТУСУРа есть доступ https://lib.tusur.ru/resursy/bazy-dannyh

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Учебная лаборатория информационных технологий

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ)

634034, Томская область, г. Томск, Вершинина улица, д. 47, 423 ауд.

Описание имеющегося оборудования:

- Доска магнитно-маркерная BRAUBERG;
- LMC-100103 Экран с электроприводом Master Control Matte 203*203 см White FiberGlass, черная кайма по периметру;
 - Проектор NEC «М361X»;
 - Системный блок (16 шт.);
 - Мониторы (16 шт.);
 - Компьютер;
 - Комплект специализированной учебной мебели;
 - Рабочее место преподавателя.

Программное обеспечение:

- Microsoft Windows 7 Pro
- OpenOffice
- PTC Mathcad13, 14

13.1.3. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

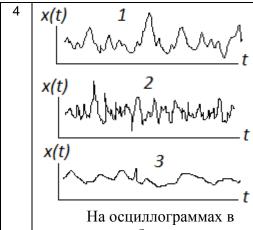
Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины


14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

1	$X(t)$ - случайный аналоговый сигнал; $X_k = X(t_k)$ - случайная величина - значение	$\int_{-\infty}^{\infty} x_k \cdot W(x_k) dx_k$
	сигнала в дискретный момент времени t_k . Какое из указанных соотношений определяет среднее	$rac{1}{n} \sum_{k=1}^n x_k$, где n - число опытов
	значение случайного сигнала. $W(x_k)$ - плотность	$\sum_{k=0}^{n} x_k \cdot W(x_k)$ $x_k \cdot W(x_k)$
	вероятностей сигнала в k - й момент времени.	$x_k \cdot W(x_k)$
2	$X(t_k)$ - случайный дискретный во времени сигнал (напряжение на резисторе),	$m_x = 3B$
	принимающий в каждый дискретный момент времени два возможных значения: $x_1 = 2B$ и	$m_{\chi} = 3.2 \text{ B}$
	$x_2 = 4 B$ с вероятностями	m_{χ} =1.6 B
	$P_1 = 0.4 u P_2 = 0.6$. Вычислить математическое ожидание m_x этого сигнала для произвольного дискретного момента времени. значений.	m_{χ} =0.5 B
3	x(t) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\Delta \tau_1 > \Delta \tau_2 > \Delta \tau_3$
	x(t) 2 2 2 2	$\Delta \tau_1 > \Delta \tau_3 > \Delta \tau_2$
	x(t) $x(t)$	$\Delta \tau_3 > \Delta \tau_1 > \Delta \tau_2$
	Выше в одном масштабе показаны три типичных записи для трех стационарных случайных сигналов. Укажите правильное соотношение для ширин $\Delta \tau_i$ нормированных	$\Delta au_2 > \Delta au_1 > \Delta au_3$

временных автокорреляцинных	
функций этих сигналов.	

$\Delta\Omega_1 > \Delta\Omega_2$	$> \Delta \Omega_3$
-----------------------------------	---------------------

$$\Delta \tau_1 > \Delta \tau_3 > \Delta \tau_2$$

$$\Delta\Omega_2 > \Delta\Omega_1 > \Delta\Omega_3$$

одном масштабе показаны три типичных записи для трех стационарных случайных сигналов. Укажите правильное соотношение для ширин спектральных функций (энергетических спектров) $\Delta\Omega_i$ этих сигналов.

 $\Delta\Omega_3 < \Delta\Omega_1 < \Delta\Omega_2$

5	x(t) 1
	x(t) 2 t
	x(t) 3 t

 $D_1 > D_2 > D_2$

$$D_1 > D_2 > D_3$$

$$D_3 > D_2 > D_1$$

Выше в одном масштабе показаны три типичных записи для трех стационарных случайных сигналов. Укажите правильное соотношение для дисперсий этих сигналов.

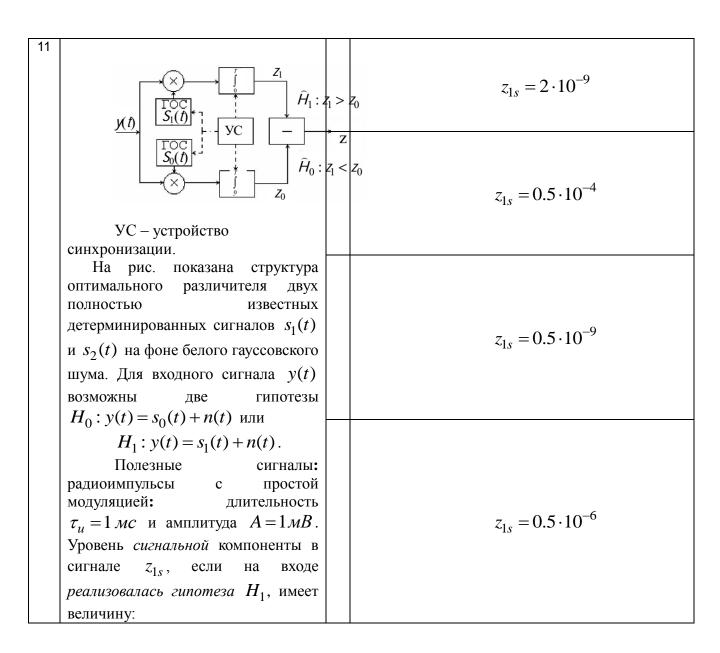
 $D_2 > D_1 > D_3$

6	Какое из указанных справа
	соотношений определяет
	временную автокорреляционную
	функцию детерминированного
	сигнала $s(t)$ конечной
	длительности.

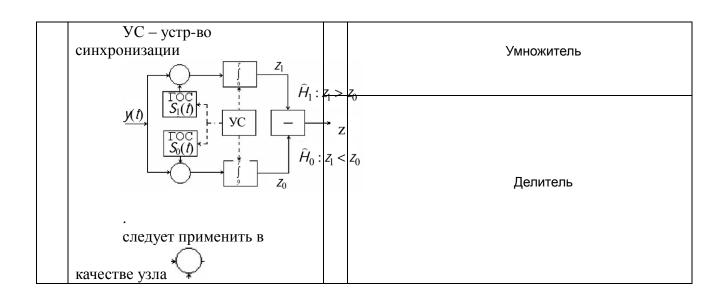
∞	
$K_s(\tau) = \int$	$s(t) \cdot s(t-\tau) d\tau$
)

$$K_s(t) = \int_{-\infty}^{\infty} s(t) \cdot s(t - \tau) dt$$
$$K_s(\tau) = \int_{-\infty}^{\infty} s(t) \cdot s(t - \tau) dt$$

$$K_s(\tau) = \int_{-\infty}^{\infty} s(t) \cdot s(t - \tau) \, dt$$


	$K_{s}(\tau) = \int_{-\infty}^{\infty} s(\tau) \cdot s(t - \tau) dt$
	*

7	Что есть база	Ширина огибающей временной
	радиосигнала?	автокорреляционной функции радиосигнала
		Эффективная протяженность сигнала
		Произведение ширины частотного
		спектра сигнала на его длительность во
		времени
		Ширина частотного спектра
		радиосигнала


8	Имеем полностью известный детерминированный сигнал $s(t)$, поступающий на вход линейного фильтра в сумме с белым шумом $n(t)$. Какую задачу решает согласованный с	Обеспечивает наименьшее искажение полезного сигнала на своем выходе Максимально устраняет влияние шума на полезный сигнал Обеспечивает на своем выходе максимальное отношение уровня полезного сигнала к шуму
	сигналом линейный фильтр?	Обеспечивает в некоторый момент времени наибольший уровень полезного сигнала на выходе.

Комплексная частотная \dot{K} (ic)	$\dot{K}_{c\phi}(i\omega) = k \cdot \dot{S}(i\omega) \cdot e^{-i\omega t_0}; \ t_0 \ge \tau_u$
согласованного линейного	$\dot{K}_{c\phi}(i\omega) = k \cdot \dot{S}^*(i\omega) \cdot e^{i\omega t_0}; \ t_0 \ge \tau_u$
фильтра связана с комплексным $\dot{S}(i\alpha)$ полезного	$\dot{K}_{c\phi}(i\omega) = k \cdot \dot{S}^*(i\omega) \cdot e^{-i\omega t_0}; t_0 < \tau_u$
сигнала $s(t)$ длительностью τ_u	$\dot{K}_{c\phi}(i\omega) = k \cdot \dot{S}^*(i\omega) \cdot e^{-i\omega t_0}; \ t_0 \ge \tau_u$
следующим соотношением (k = const)	
	характеристика $\dot{K}_{c\phi}(i\omega)$ согласованного линейного фильтра связана с комплексным спектром $\dot{S}(i\omega)$ полезного сигнала $s(t)$ длительностью τ_u

10	Импульсная реакция	$h_{c\phi}(t) = k \cdot s(t_0 + t); t_0 \ge \tau_u$
	$h_{c\phi}(t)$ фильтра согласованного с	$h_{c\phi}(t) = k \cdot s(t_0 - t); t_0 \ge \tau_u$
	сигналом $s(t)$ длительностью τ_u определена соотношением	$h_{c\phi}(t) = k \cdot s(t_0 - t); t_0 < \tau_u$
	$(k = const; t_0 = const)$	$h_{c\phi}(t) = k \cdot s(t_0 - t); \ t_0 \ge \tau_u$

12	В схеме оптимального различителя двух полностью известных сигналов $s_1(t)$ и	Вычитающее устройство
	$s_2(t)$ на фоне гауссовского белого шума $\Gamma \text{OC} - \text{генер-р опорн.}$ сигнала;	Сумматор

13	Применение сложных радиосигналов с большой базой	не имеет преимуществ по сравнению с сигналами с простой модуляцией
	типа ЛЧМ и ФКМ позволяет при	получить узкий по оси времени пик
	оптимальной обработке	выходного сигнала по сравнению со случаем
		применения сигнала равной длительности и с
		простой модуляцией
		получить преимущества в разрешении
		сигналов по частоте и временной задержке
		 только при большом отношении С/Ш
		увеличить длительность импульсного
		сигнала с одновременным расширением
		частотного спектра, что обеспечит
		формирование на выходе устройства обработки
		узкого пика выходного сигнала по частотной и
		временной оси, т.е.

14		пропорциональна ширине частотного
		спектра радио сигнала
		обратно пропорциональна
	Ширина главного сечения	произведению длительности радиосигнала на
	функции неопределенности	ширину частотного спектра
	радиосигнала по частотной оси	обратно пропорциональна длительности
		радиосигнала
		пропорциональна величине базы
		радиосигнала

15	Ширина главного сечения	пропорциональна величине базы радиосигнала
	функции неопределенности радиосигнала по временной оси	обратно пропорциональна ширине частотного спектра радиосигнала

	обратно пропорциональна произведению длительности радиосигнала на ширину частотного спектра пропорциональна ширине частотного спектра радио сигнала
--	---

16	Какие статистические	Статистическое среднее значение
	параметры оценки неизвестного	разности между истинным значением
	параметра сигнала определяют	параметра и оценкой этого параметра
	качество этой оценки	Дисперсия оценки
		Разность между истинным значением
		параметра и оценкой
		Средний квадрат погрешности (ошибки)

17	Метод наименьших	Обнаружения полезного сигнала на фоне
	квадратов используют для	шума
	решения задач	Сглаживания наблюдаемого случайного
		сигнала и оценки неизвестных параметров
		сглаженной функции (сигнала)
		Различения сигналов
		Разрешения сигналов

18	Для экспериментальной	Только от объема выборки
	оценки среднего значения	Только от СКО случайной величины
	(математического ожидания)	Не зависит от объема выборки
	случайной величины используют	Пропорционально СКО случайной
	выборочное среднее значение	величины и обратно пропорционально
	(среднее арифметическое	квадратному корню из объема выборки
	последовательности	
	наблюдений). При этом рассеяние	
	оценки – ее среднее	
	квадратическое отклонение	
	(СКО) зависит	

19	В приемнике обнаружения	уровня полезного сигнала на входе
	полезного сигнала на фоне шума	порогового устройства
	вероятность события - ложная	уровня шума на входе порогового
	тревога зависит от	устройства
		Отношения мощности полезного
		сигнала к мощности шума
		отношения величины порога к
		среднеквадратичному значению шума на входе
		порогового устройства

20	Сигнал на входе приемника $y(t_k) = s(t_k; \lambda) + n(t_k) \ \ s(t_k)$	$W(\vec{\mathbf{y}}/\lambda) = 1/\left[(2\pi)^{N/2} \cdot \sigma^{N} \right] \cdot \exp\left[-\frac{1}{2\sigma_{n}^{2}} \sum_{k=1}^{N} (y_{k} - s_{k}(\lambda))^{2} \right] = L_{\tilde{\mathbf{y}}}(\lambda)$
	полезный сигнал; $n(t_k)$ - гауссовский некоррелированный шум с нулевым средним	$W(\vec{\mathbf{y}}/\lambda) = 1/\left[(2\pi)^{N/2} \cdot \sigma^{N} \right] \cdot \exp\left[-\frac{1}{2\sigma_{n}^{2}} \sum_{k=1}^{N} (s_{k}(\lambda))^{2} \right] \equiv L_{\vec{\mathbf{y}}}(\lambda)$
	значением и дисперсией σ_n^2 ; λ - неизвестный параметр полезного сигнала. На интервале обработки образована выборка	$W(\vec{\mathbf{y}}, \lambda) = 1/\left[(2\pi)^{N/2} \cdot \sigma^N \right] \cdot \exp\left[-\frac{1}{2\sigma_n^2} \sum_{k=1}^N \left(y_k^2 \right) \right] = L_{\tilde{\mathbf{y}}}(\lambda)$
	$\vec{\mathbf{y}} = \left\{ y_k; k = 1,, N \right\}$ из N отсчетов сигнала $y(t_k) \equiv y_k$. Укажите выражение для функции правдоподобия	$L_{\tilde{\mathbf{y}}}(\lambda) = \exp\left[-\frac{1}{2\sigma_n^2} \sum_{k=1}^{N} \left(-s_k^2(\lambda)\right)\right]$

14.1.2. Экзаменационные вопросы

- 1. Статистическое описание смеси регулярного сигнала и гауссовской узкополосной случайной помехи. Свойства огибающей и фазы.
- 2. Постановка задачи синтеза линейного оптимального по критерию отношения С/Ш фильтра для случая регулярного сигнала и белого шума. Характеристики согласованного фильтра.
- 1. Статистическое описание случайного сигнала (функции). Перечислите и объясните содержание тех понятий, которые используются для статистического описания.
- 2. Функция различия двух детерминированных радиосигналов по не энергетическому параметру (временная задержка, частотный сдвиг). Частотно-временная корреляционная функция узкополосного радиосигнала. Взаимосвязь параметров этой функции и параметрами радиосигнала.
- 1. Функция неопределенности (ФН) радиосигнала: свойства и принцип неопределенности в радиолокации. Взаимосвязь параметров ФН с параметрами радиосигнала. Простые и сложные сигналы.
- 2. Постановка задачи оптимального различения двух детерминированных радиосигналов на фоне белого гауссовского шума. Интерпретация результата решения.
- 1. Оптимальный обнаружитель известного радиосигнала на фоне белого гауссовского шума: критерий оптимальности, структура обнаружителя, характеристики качества работы. Осциллограммы процессов в структурной схеме обнаружителя.
- 2. Статистические свойства огибающей и фазы стационарного узкополосного гауссовского шума.
- 1. Постановка задачи синтеза оптимального измерителя неизвестного параметра сигнала на фоне помехи: байесовский подход: критерии оптимальности и типы оценок. Максимально правдоподобные оценки параметра. Пример оценки постоянного неизвестного параметра на фоне белого гауссовского шума.
- 2. Что есть разрешающая способность РЛС по дальности? Какие параметры радиосигнала определяют предельную величину разрешающей способности по дальности?
- 1. Типовые структуры максимально-правдоподобных измерителей неизвестного параметра радиосигнала на примере измерителя временного положения импульсного радиосигнала. Потенциальная точность оценки временного положения сигнала.
- 2. Согласованный фильтр: критерий оптимальности, системные характеристики фильтра: комплексная частотная характеристика и импульсная реакция. Осциллограммы сигналов на входе и выходе фильтра для случая полезного сигнала с простой и сложной модуляцией.

- 1. Статистические параметры, определяющие свойства оценок неизвестных параметров сигналов при наличии помех.
- 2. Задача оценки неизвестной начальной фазы регулярного радиосигнала на фоне белого гауссовского шума: структура измерителя, СКО оценки.

14.1.3. Темы домашних заданий

Частотно-временная корреляционная функция (ЧВКФ) узкополосного радиосигнала. Взаимосвязь параметров радиосигнала и параметров огибающей ЧВКФ. Функция неопределенности и ее свойства. Типы сигналов с большой базой.

Постановка задачи оптимальной линейной фильтрации по критерию отношения С/Ш. Согласованный фильтр, его системные функции. Свойства сигнала на выходе фильтра.

Постановка задачи синтеза оптимального различителя 2-х сигналов на фоне помехи в статистической теории проверки гипотез. Понятие среднего риска. Решающее правило. Отношение правдоподобия. Структура оптимального различителя 2-х известных сигналов на фоне белого гауссовского шума. Характеристики качества приемника-различителя.

Постановка задачи синтеза оптимального измерителя неизвестного параметра полезного сигнала на фоне помехи в статистической теории оценок. Байесовский риск. Апостериорная плотность вероятностей и типы оптимальных оценок. Функция правдоподобия и МП оценки.

14.1.4. Зачёт

- 1. В чем принципиальное отличие сигнала и помехи?
- 2. Почему РТС извлечения информации относят к системам с внешней модуляцией, а РТС передачи информации к системам с внутренней модуляцией?
 - 3. В чем отличие аддитивной помехи от мультипликативной?
- 4. В чем различие детерминированного и статистического подходов к решению задач анализа и синтеза РТС? Почему детерминированный подход не состоятелен?
- 5. Перечислите функции и параметры, задание которых связано с понятием «статистическое описание» случайной функции?
 - 6. В чем отличие детерминированной, квазидетерминированной и случайной функций?
 - 7. В чем отличие аналогового и цифрового сообщений?
 - 8. Запишите общее выражение сигнала переносчика сообщения
- 9. В чем отличие сигналов с одноступенчатой и двухступенчатой модуляцией? Приведите примеры осциллограмм.
 - 10. Что есть функция различия сигналов и каков ее смысл?
- 11. Запишите выражение функции различия двух сигналов по одному информативному параметру х, когда он не является энергетическим. По двум параметрам?
- 12. Запишите в общем виде частотно временную корреляционную функцию узкополосного радиосигнала.
- 13. Запишите выражение временной автокорреляционной функции (АКФ) узкополосного радиосигнала в действительной и комплексной форме.
- 14. Запишите выражение комплексной огибающей временной АКФ узкополосного радиосигнала и обоснуйте тот факт, что это медленная (в сравнении с гармонической несущей) функция времени.
 - 15. Что есть функция неопределенности (ФП) радиосигнала и каковы ее свойства?
 - 16. В чем сущность принципа неопределенности в радиолокации?
 - 17. Какие параметры радиосигнала определяют ширину ФП вдоль осей время частота?
- 18. Что есть база радиосигнала и в чем различие сигналов с простой и сложной модуляцией?
- 19. Почему для сигнала с простой модуляцией уменьшение ширины пика ФН по оси времени непременно приводит (при постоянной мощности) к снижению энергии этого сиг-нала?
- 20. Почему для сигнала со сложной модуляцией уменьшение ширины пика ФН по оси времени не приводит (при постоянной мощности) к снижению энергии этого сигнала?
- 21. В каком случае ширина огибающей радиосигнала и ширина огибающей временной АКФ этого сигнала примерно одинаковы? Когда они могут различаться на несколько порядков?
- 22. Изобразите графически временную АКФ одиночного радиоимпульса с прямоугольной огибающей и простой модуляцией.

- 23. Изобразите графически временную АКФ одиночного ФКМ радиоимпульса с прямоугольной огибающей?
- 24. Почему для полноты вероятностного описания случайного сигнала необходимо привлечение плотностей распределения вероятностей более чем 1-го порядка?
- 25. Какая функция определяет спектральные свойства случайного стационарного процесса, поясните ее вероятностный смысл и физическую единицу измерения?
- 26. Какой случайный процесс называют нормальным и каковы его особенности? Покажите взаимосвязь квадратурных составляющих узкополосного радиосигнала с его огибающей и фазой.
 - 27. Что означает тот факт, что шум белый?
 - 28. Что означает тот факт, что шум стационарный и гауссовский?
- 29. Запишите выражение для одномерной ПРВ огибающей и назовите параметры, которые определяют вид этой функции.
- 30. Какой параметр характеризует величину СКО огибающей (или фазы) смеси регулярного и случайного шума относительно их средних значений.
- 31. Сделайте эскиз ПРВ фазы смеси регулярного сигнала и случайного гауссовского шума для двух значений параметра когерентности a1 > a2.
 - 1. Назовите основные задачи статистической теории радиосистем.
 - 2. В чем суть задачи оптимизации РТС и каковы основные этапы ее решения?
- 3. Изложите постановку задачи оптимизации характеристик линейного фильтра, решением которой является согласованный фильтр.
- 4. Если есть комплексный частотный спектр полезного сигнала, то какой вид имеют комплексный коэффициент передачи согласованного фильтра и его импульсная реакция?
 - 5. Объясните работу согласованного фильтра на физическом уровне?
- 6. Какие величины определяют максимальное отношение уровня сигнала к среднеквадратичному значению шума на выходе согласованного фильтра?
- 7. В какой момент времени на выходе согласованного фильтра можно получить наибольшее превышение полезного сигнала над шумом?
- 8. Какую форму имеет полезный сигнал на выходе согласованного фильтра, если входной сигнал есть: одиночный прямоугольный видеоимпульс; радиоимпульс с прямоугольной огибающей; одиночный радиоимпульс с ФКМ?
- 9. Изобразите структурную схему согласованного фильтра для радиоимпульса с ФКМ; для пачки радиоимпульсов с простой модуляцией.
- 10. Изложите постановку задачи в байесовской теории синтеза оптимального приемника различителя (обнаружителя) 2 х полезных сигналов на фоне помехи.
- 11. Каков смысл величин, определяющих платежную матрицу в задаче синтеза оптимального приемника различителя?
- 12. Что есть средний байесов риск в задаче синтеза оптимального приемника различителя 2-х сигналов; приемника обнаружителя полезного сигнала на фоне шума?
- 13. Запишите в общем виде оптимальное решающее правило приемника различителя 2- х сигналов на фоне помехи.
- 14. Почему отношение 2 х плотностей распределения вероятностей, участвующих при формировании решения на выходе оптимального приемника различителя, называют отношением правдоподобия?
- 15. Дайте формулировку критерия «идеального наблюдателя»; критерия Неймана Пирсона?
- 16. Изобразите структуру оптимального приемника различителя для случая 2-x полностью известных сигналов, поступающих на вход приемника вместе с белым гауссовым шумом.
- 17. Изобразите структуру оптимального приемника обнаружителя полностью известного, поступающего на вход приемника вместе с белым гауссовым шумом.
- 18. Почему в структуре оптимального приемника различителя (обнаружителя) полностью известных сигналов возможно применение согласованных фильтров?
 - 19. В каких координатах представляют графики кривых, определяющих статистические

характеристики качества бинарного приемника – различителя?

- 20. Какие из перечисленных четырех случайных событий в приемнике обнаружителе являются противоположными: ложная тревога; пропуск сигнала; правильное обнаружение; неправильное обнаружение?
- 21. Изобразите графически ПРВ выходного сигнала оптимального приемника различителя (обнаружителя) и укажите площади, определяющие вероятности принятия ошибочных решений.
 - 1. Изложите в общем виде постановку задачи в статистической теории оценивания.
 - 2. Что есть смещение оценки неизвестного параметра сигнала?
 - 3. Запишите выражение для среднеквадратической ошибки параметра сигнала.
 - 4. Поясните свойство состоятельности оценок.
- 5. Изложите постановку задачи оценки параметра сигнала в байесовской теории оценивания.
- 6. Какой смысл имеет функция потерь в байесовской теории оценивания и каковы основные типы этих функций?
 - 7. Что есть байесовский риск в теории оценивания?
 - 8. Запишите в общей форме выражение байесовского риска.
- 9. Каков содержательный смысл априорной ПРВ и апостериорной ПРВ оцениваемого параметра?
- 10. Запишите в общей форме выражение байесовской оценки при квадратичной функции потерь.
 - 11. Как изменяется вид байесовской оценки при назначении простой функции потерь?.
 - 12. Что есть функция правдоподобия и оценка параметра по максимуму правдоподобия?
- 13. Запишите выражение, связывающее апостериорную ПРВ оцениваемого параметра и функцию правдоподобия; запишите в общем виде уравнение правдоподобия.
- 14. Запишите в общей форме математическую модель наблюдаемого сигнала, которая содержит аддитивную помеху и является линейной по отношению к одному (двум, трем) неизвестным параметрам.
- 15. Каков смысл и вид целевой функции при определении оценок по методу наименьших квадратов (МНК) ?
- 16. В чем особенность оператора, определяющего оценку в случае линейной по параметрам модели наблюдаемого сигнала?
- 17. Выполните необходимые преобразования и получите выражение для оценки постоянного параметра методом наименьших квадратов.
 - 18. Каково условие несмещенности оценок по МНК?
- 19. Какие величины определяют СКО оценки постоянного параметра, если выборка состоит из некоррелированных отсчетов наблюдаемого сигнала?
- 20. Изобразите в общем виде структуру оптимального измерителя неизвестного параметра сигнала и поясните функции отдельных элементов измерителя.
- 21. Запишите выражение для дисперсии оценки неизвестного параметра сигнала, поступающего в смеси с белым гауссовым шумом на вход приемника измерителя и перечислите величины, которые определяют ее значение.
- 22. Запишите в общей форме функцию правдоподобия параметра для случая выборки, состоящей из п статистически независимых отсчетов наблюдаемого сигнала.
- 24. Как определяют вклад выборки и отдельного наблюдения, являющегося элементом статистически независимой выборки?
- 25. Как определяют количество информации по Фишеру о параметре, содержащееся в независимой выборке объема n?
- 26. Какими свойствами обладают максимально правдоподобные оценки неизвестного параметра при выполнении условий регулярности для функции правдоподобия?
 - 27. Запишите неравенство Крамера Рао. Что определяет это неравенство?
- 28. В чем состоит особенность задачи разрешения сигналов по параметру в сравнении с задачей различения сигналов?
 - 29. Что есть мера разрешения двух сигналов по параметру временной задержки?

- 30. Что определяет величину потенциальной разрешающей способности двух сигналов известной формы по времени задержки?
- 31. Как следует построить приемник обнаружитель, чтобы реализовать предельную разрешающую способность сигналов известной формы по времени задержки?
- 32. Что дает применение сигналов с большой базой в плане их разрешения по времени задержки?
- 33. Каковы особенности разрешения сигналов одновременно по двум параметрам времени задержки и частотному сдвигу?
- 34. Почему применение сигнала с простой модуляцией не позволяет одновременно повышать разрешение сигналов по временной задержке и частотному сдвигу?
- 35. В чем состоит преимущество применения сигналов с большой базой при достижении высокого разрешения сигналов по временной задержке и частотному сдвигу?

14.1.5. Темы опросов на занятиях

Классификация сигналов и сообщений. Функция различия сигналов. Частотно-временная корреляционная функция узкополосного радиосигнала и ее структура. Функция неопределенности радиосигнала и связь ее параметров с параметрами радиосигнала. Принцип неопределенности. Примеры функций неопределенности простых и сложных импульсных сигналов.

Стационарная гауссовская случайная помеха. Белый шум. Статистические свойства огибающей и фазы смеси регулярного сигнала и гауссовской помехи.

Радиоканал и его свойства. Модель сигнала в однолучевом и многолучевом каналах. Пространственные частотные и временные искажения структуры электромагнитного поля в месте приема. Гауссовская модель полезного сигнала в многолучевом канале.

Общая характеристика задач статистической теории РТС. Согласованный линейный фильтр: импульсная реакция и комплексная частотная характеристика согласованного фильтра; форма сигнала на выходе и отношение уровней сигнала к шуму на выходе согласованного фильтра. Примеры построения согласованных фильтров: фильтр для прямоугольного радиоимпульса с прямоугольной огибающей; для прямоугольного радиоимпульса с фазокодовой манипуляцией (ФКМ), фильтр для пачки когерентных радиоимпульсов.

Байесовская теория синтеза оптимального приемника - различителя (обнаружителя) сигнала при наличии помех: функция потерь; средний байесов риск; отношение правдоподобия.

Структура оптимального приемника — различителя (обнаружителя) детерминированного сигнала на фоне белого гауссова шума: корреляционный приемник и приемник с согласованным фильтром. Статистические характеристика качества различения и обнаружения.

Оценки параметров сигналов и их свойства. Байесовская теория оценок: функция потерь; байесовский риск; оптимальные байесовские оценки. Функция правдо-подобия и максимально правдоподобные оценки. Совместные оценки.

Метод наименьших квадратов: оператор оценки в линейных моделях; статистические свойства оценок МНК. Примеры оценок неизвестных параметров.

Общая структурная схема оптимального измерителя параметра сигнала известной формы. Статистические характеристики (среднее и дисперсия) максимально правдоподобной оценки параметра сигнала при большом отношении уровня сигнала к шуму. Оптимальная оценка амлитуды и начальной фазы регулярного сигнала.

Информация по Фишеру. Неравенство Крамера – Рао.

14.1.6. Вопросы на самоподготовку

Статистические свойства огибающей и фазы аддитивной смеси регулярного сигнала и гауссовского шума: плотность распределения вероятностей, математическое ожидание и среднее квадратическое отклонение. Методология статистического моделирования на ЦВМ с использованием типовых пакетов прикладных программ.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями

здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.