МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	`	УТВЕР	ЖДАЮ)		
Дирек	тор д	епарта	мента с	бразо	ван	ИЯ
			П. 1	Е. Тро	нк	
‹ ‹	>>			20	Γ.	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Устройства приема и обработки дискретных и аналоговых сигналов

Уровень образования: высшее образование - магистратура

Направление подготовки / специальность: 11.04.01 Радиотехника

Направленность (профиль) / специализация: Радиотехнические системы и комплексы

Форма обучения: очная

Факультет: **РТФ**, **Радиотехнический факультет** Кафедра: **РТС**, **Кафедра радиотехнических систем**

Курс: **1** Семестр: **2**

Учебный план набора 2018 года

Распределение рабочего времени

No	Виды учебной деятельности	2 семестр	Всего	Единицы
1	Лекции	36	36	часов
2	Практические занятия	24	24	часов
3	Лабораторные работы	16	16	часов
4	Контроль самостоятельной работы (курсовой проект / курсовая работа)	8	8	часов
5	Всего аудиторных занятий	84	84	часов
6	Самостоятельная работа	60	60	часов
7	Всего (без экзамена)	144	144	часов
8	Подготовка и сдача экзамена	36	36	часов
9	Общая трудоемкость	180	180	часов
		5.0	5.0	3.E.

Экзамен: 2 семестр

Курсовой проект / курсовая работа: 2 семестр

Томск 2018

Рассмотрена	и одо	брена на	зас	едании	кафедры
протокол №	11	от «_3	>>	7	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

говки	ного образовательного стандарта высше	ивлена с учетом требований федерального государто образования (ФГОС ВО) по направлению подгорудартивержденного $30.10.2014$ года, рассмотрена и одо20 года, протокол N_2
	Разработчик:	
	заведующий кафедрой каф. РЗИ	А. С. Задорин
	Заведующий обеспечивающей каф. PCC	А. В. Фатеев
	Рабочая программа дисциплины согласо	ована с факультетом и выпускающей кафедрой:
	Декан РТФ	К. Ю. Попова
	Заведующий выпускающей каф. РТС	С. В. Мелихов
	Эксперты:	
	Доцент кафедры радиоэлектроники и систем связи (РСС)	Н. Д. Хатьков
	Доцент кафедры радиотехнических систем (РТС)	В. А. Громов

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Дисциплина «Устройства приема и обработки дискретных и аналоговых сигналов» (УПОС) ставит своей целью подготовку студентов по теоретическим основам, принципам построения, практическому проектированию трактов приема и аналого-цифровой обработки сигналов ра-диотехнических систем различного назначения. Изучение дисциплины должно заложить у сту-дентов навыки самостоятельного решения задач на высоком профессиональном уровне и воспитать стремление овладевать новыми научными и практическими знаниями.

1.2. Задачи дисциплины

- К основным задачам дисциплины относится изучение:
- − разновидностей структурных схем приемников, областей их применения, преимуществ и недостатков;
 - элементов и узлов УПОС;
 - автоматических регулировок в УПОС;
- − особенностей построения устройств приема информации, передаваемой в цифро-вой форме;
 - особенностей устройств приема шумоподобных сигналов;
 - теория и техника измерений технических характеристик УПОС

2. Место дисциплины в структуре ОПОП

Дисциплина «Устройства приема и обработки дискретных и аналоговых сигналов» (Б1.Б.2) относится к блоку 1 (базовая часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Проектирование радиотехнических систем.

Последующими дисциплинами являются: Теория и техника радиолокации и радионавигашии.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- OK-4 способностью адаптироваться к изменяющимся условиям, переоценивать накопленный опыт, анализировать свои возможности;
- ОПК-1 способностью понимать основные проблемы в своей предметной области, выбирать методы и средства их решения;
- ОПК-5 готовностью оформлять, представлять, докладывать и аргументированно защищать результаты выполненной работы;

В результате изучения дисциплины обучающийся должен:

- **знать** современные методы математического описания принципа действия функциональных блоков и систем радиоприемного устройства (РПрУ); основные закономерности преобразования сигналов в типовых каскадах приемного устройства; методы обеспечения помехоустойчивости при приеме и преобразовании сигналов;
- **уметь** использовать современные средства вычислительной техники для решения задач приема и обработки сигналов; работать со специальной литературой; готовить техническую документацию на разработанные устройства.
- **владеть** методами и способами инженерного проектирования современных РПрУ различного назначения, их подсистем, блоков и узлов; методами экспериментальных исследований и ис-пытаний разработанных устройств; методами обработки результатов экспериментальных исследований

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в таблине 4.1.

3

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		2 семестр
Аудиторные занятия (всего)	84	84
Лекции	36	36
Практические занятия	24	24
Лабораторные работы	16	16
Контроль самостоятельной работы (курсовой проект / курсовая работа)	8	8
Самостоятельная работа (всего)	60	60
Выполнение курсового проекта / курсовой работы	20	20
Проработка лекционного материала	40	40
Всего (без экзамена)	144	144
Подготовка и сдача экзамена	36	36
Общая трудоемкость, ч	180	180
Зачетные Единицы	5.0	5.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лек., ч	Прак. зан., ч	Лаб. раб., ч	КП/КР, ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
	,	2 семест	p				
1 Введение. Параметры и характеристики УПОС. Структурные схемы УПОС. Частотные фильтры и входные цепи.	8	4	4	8	10	26	ОК-4, ОПК-
2 Усилители радиочастоты; Преобразователи частоты; Усилители промежуточной частоты.	8	8	8		10	34	ОК-4, ОПК- 5
3 Детекторы амплитудно-модулированных сигналов; Автоматические и ручные регулировки в УПОС.	8	8	4		10	30	ОК-4, ОПК- 5
4 Цифровые виды модуляции. Канальное кодирование. Влияние линейных искажений и нелинейных искажений на качество передачи цифровых сигналов. Коррекция передаточных характеристик тракта.	12	4	0		10	26	ОК-4, ОПК- 5
5 Курсовой проект по дисциплине УПОС.	0	0	0		20	20	ОК-4, ОПК- 5

6 Экзамен	0	0	0		0	0	
Итого за семестр	36	24	16	8	60	144	
Итого	36	24	16	8	60	144	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Таолица 3.2 Содоржани	е разделов дисциплин (по лекциям)	Tb,	ые
Названия разделов	Содержание разделов дисциплины (по лекциям)	Трудоемкость, ч	Формируемые компетенции
	2 семестр		
1 Введение. Параметры и характеристики УПОС. Структурные схемы УПОС. Частотные фильтры и входные цепи.	Содержание, учебной рабочей программы по дисциплине УПОС. Методические рекомендации. Рекомендуемая учебная литература. Структурные схемы радиоканалов. Место и функции приёмников в радиоканалах. Классификация РПрУ. Радиосигналы, радиопомехи и электрические шумы (аналитическое, временное и спектральное представление сигналов и помех). Структурные схемы РПрУ: прямого усиления, прямого преобразования, супергетеродинного. Обработка радиосигналов в приёмниках. Основные электрические характеристики РПрУ: чувствительность и избирательность. Схемы, характеристики и физическая реализация частотных фильтров, применяемых в приёмниках в различных диапазонах частот. Электрические эквивалентные схемы и характеристики антенн. Назначение, электрические схемы и характеристики входных цепей (полоса, частотная избирательность, коэффициент передачи, коэффициент шума). Искажения сигналов во входных цепях.	8	ОК-4, ОПК-5
2 Усилители радиочастоты; Преобразователи частоты; Усилители промежуточной частоты.	Назначение, схемы и характеристики усилителей радиочастоты (коэффициент усиления, устойчивость, коэффициент шума). Линейные искажения сигналов и нелинейные эффекты (блокирование, перекрёстная модуляция, интермодуляция, вторичная модуляция) в усилителях радиочастоты. Назначение, принцип действия, схемы и характеристики преобразователей частоты (амплитудно-частотная характеристика, дополнительные каналы приёма, частоты их и коэффициенты передачи). Выбор промежуточной частоты. Двойное преобразование частоты. Требования к амплитуде напряжения и стабильности частоты гетеродина. Сопряжение резонансных частот гетеродина и преселектора. Комбинационные, интерференционные и интермодуляционные искажения сигналов в преобразователях частоты. Назначение, схемы, характеристики	8	ОК-4, ОПК-5

	,		
	усилителей промежуточной частоты (коэффициент усиления, амплитудно-частотные и амплитудные характеристики). Искажения сигналов в усилителях промежуточной частоты.		
	Итого	8	
3 Детекторы амплитудно-модулированных сигналов; Автоматические и ручные регулировки в УПОС.	Назначение, схемы, принцип действия, характеристики амплитудных детекторов (коэффициент передачи, детекторная и амплитудно-частотная характеристики). Линейные и нелинейные искажения сигналов в амплитудных детекторах. Схемы и характеристики импульсных и пиковых детекторов.Схемы, принцип действия, коэффициенты передачи, детекторные характеристики фазовых и частотных детекторов и искажения сигналов в них.Принцип действия, схемы и характеристики ручных и автоматических регулировок в РПрУ: частоты (настройки на частоту сигнала), усиления и полосы, подстройки частоты гетеродина. Влияние регулировок на искажения сигналов в приёмниках.	8	ОК-4, ОПК-5
	Итого	8	
4 Цифровые виды модуляции. Канальное кодирование. Влияние линейных искажений и нелинейных искажений на качество передачи цифровых сигналов. Коррекция передаточных характеристик тракта.	Разновидности модуляции, применяемые в узкополосных, широкополосных и сверхширокополосных системах цифровой связи. Амплитудная, фазовая, частотная манипуляция (ASK, PSK, FSK), дифференциальная фазо-вая манипуляция (DPSK), модуляция без разрыва фазы (CPM), квадратурная амплитудная модуляция (QAM), OFDM- модуляция, времяимпульсная мо-дуляция.Канальное кодирование: М-арная передача сигнала, антиподные сигналы, ортогональные сигналы, Сопоставление влияния шумов в канале передачи на качество передаваемого сигнала в аналоговых и цифровых системах. Одиночные и групповые ошибки. Типы защиты от ошибок. Уменьшение количества ошибок добавлением избыточности. Теорема Шеннона. Пропускная способность канала связи. Свёрточное кодирование. Скремблирование. • Специфика влияния искажений амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик канала связи в цифровых системах на качество передачи. Многолучёвость как одна из причин искажений АЧХ и ФЧХ. Оценка искажений в канале передачи. Трансверсальные, рекурсивные кор-ректоры. Разделение символов.Допустимые уровни цифровых сигналов для различных видов модуляции. Методы измерения нелинейности преобразования: измерение интермодуляции (двухчастотный метод, метод с использованием полос шума), методы исследования нелинейности с использованием сверх-	12	OK-4, OΠK-5
	широкополосных тестовых сигналов. Итого	12	_

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин						
	1	2	3	4	5	6	
Предшествующие дисциплины							
1 Проектирование радиотехнических систем	+	+	+	+		+	
Последующие дисциплины							
1 Теория и техника радиолокации и радионавигации	+	+	+	+	+	+	

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

И		I	Виды занятий			
Компетенции	Лек.	Прак. зан.	JIa6. pa6.	KCP (KII/KP)	Сам. раб.	Формы контроля
OK-4	+	+	+	+	+	Домашнее задание, Защита отчета, Собеседование, Отчет по лабораторной работе, Опрос на занятиях, Защита курсовых проектов / курсовых работ, Тест
ОПК-1				+		Собеседование
ОПК-5	+	+	+		+	Домашнее задание, Защита отчета, Отчет по лабораторной работе, Опрос на занятиях, Защита курсовых проектов / курсовых работ, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

таолица 7.1 — Паименова	пис лаоораторных раоот		
Названия разделов	Наименование лабораторных работ	Трудоемкость,	Формируемые компетенции
	2 семестр		
1 Введение. Параметры	Исследование входных цепей	4	ОК-4,
и характеристики УПОС. Структурные схемы УПОС. Частотные фильтры и входные цепи.	Итого	4	ОПК-5
2 Усилители	Исследование усилителя радиочастоты	4	ОК-4,
радиочастоты; Преобразователи	Исследование преобразователя частоты	4	ОПК-5
частоты; Усилители промежуточной частоты.	Итого	8	
3 Детекторы	Исследование амплитудного детектора	4	ОК-4
амплитудно- модулированных сигналов; Автоматические и ручные регулировки в УПОС.	Итого	4	
Итого за семестр		16	

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	2 семестр		
1 Введение. Параметры и характеристики УПОС. Структурные схемы УПОС. Частотные фильтры и входные цепи.	Структурные схемы и системные характеристики РПрУ: Чувствительность и избирательность РПрУ; Частотно избирательные цепи РПрУ: схемы и характеристики:, амплитудно-частотная характеристика, резонансная частота, резонансное и волновое сопротивления, добротность, полоса частот; Схемотехника входных цепей РПрУ	4	ОК-4, ОПК-5
	Итого	4	
2 Усилители радиочастоты; Преобразователи частоты; Усилители	Структурные схемы и системные характеристики РПрУ.: Чувствительность и избирательность РПрУ;Частотно избирательные цепи РПрУ: схемы и характеристики:, амплитудно-частотная характе-	4	ОК-4, ОПК-5

промежуточной частоты.	ристика, резонансная частота, резонансное и волновое сопротивления, добротность, полоса частот; Схемотехника входных цепей РПрУ		
	Усилители радиочастоты: коэффициент усиления, ампли-тудно-частотная характеристика, избирательность и полоса частот;Преобразователи частоты: схемы и характеристики;	4	
	Итого	8	
3 Детекторы амплитудно- модулированных сигналов; Автоматические и	Детекторы амплитудно-модулированных сигналов: схемы и характеристики: детекторная, амплитудно-частотная, коэффициент передачи;Импульсные, фазовые и частотные детекторы: схемы и характеристики;	4	ОК-4, ОПК-5
ручные регулировки в УПОС.	Регулировки в радиоприёмниках: ручная автоматическая настройка, автоматическая регулировка усиления, автоматическая подстройка частоты гетеродина.	4	
	Итого	8	
4 Цифровые виды модуляции. Канальное кодирование. Влияние линейных искажений и нелинейных искажений на качество передачи цифровых сигналов. Коррекция передаточных характеристик тракта.	Методы цифровой модуляции. Амплитудная, фазовая, частотная манипуляция (ASK, PSK, FSK), квадратурная амплитудная модуляция (QAM), OFDM- модуляция, времяимпульсная модуляцияВлияния шумов в канале передачи на качество передаваемого сигнала в цифровых системах. Защита от помех.Влияние искажений АЧХ и ФЧХ канала связи в на уровень ошибок в цифровых системах	4	ОК-4, ОПК-5
	Итого	4	
Итого за семестр		24	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	2 семест	p		
1 Введение. Параметры и характеристики	Проработка лекционного материала	10	ОК-4, ОПК-5	Опрос на занятиях
УПОС. Структурные схемы УПОС. Частотные фильтры и входные цепи.	Итого	10		
2 Усилители радиочастоты;	Проработка лекционного материала	10	ОК-4, ОПК-5	Опрос на занятиях
Преобразователи	Итого	10		

частоты; Усилители промежуточной частоты.				
3 Детекторы амплитудно-модулированных сигналов; Автоматические и ручные регулировки в УПОС.	Проработка лекционного материала	10	ОК-4, ОПК-5	Опрос на занятиях
	Итого	10		
4 Цифровые виды модуляции. Канальное	Проработка лекционного материала	10	ОК-4, Опрос на ОПК-5	Опрос на занятиях
кодирование. Влияние линейных искажений и нелинейных искажений на качество передачи цифровых сигналов. Коррекция передаточных характеристик тракта.	Итого	10		
5 Курсовой проект по дисциплине УПОС.	Выполнение курсового проекта / курсовой работы	20	ОК-4, ОПК-5	Защита курсовых проектов / курсовых работ, Тест
	Итого	20		
Итого за семестр		60		
	Подготовка и сдача экза- мена	36		Экзамен
Итого		96		

10. Курсовой проект / курсовая работа

Трудоемкость аудиторных занятий и формируемые компетенции в рамках выполнения курсового проекта / курсовой работы представлены таблице 10.1.

Таблица 10.1 – Трудоемкость аудиторных занятий и формируемые компетенции в рамках выполне-

ния курсового проекта / курсовой работы

min kypeoboro npoekta / kypeobon paoorin		
Наименование аудиторных занятий	Трудоемкость,	Формируемые компетенции
2 семестр		
Изучение теоретического материала. Проведение расчетных и графических работ по заданию КП. Устранение замечаний и подготовка к защите КП.	8	ОК-4, ОПК-1
Итого за семестр	8	

10.1. Темы курсовых проектов / курсовых работ

Примерная тематика курсовых проектов / курсовых работ:

– Радиовещательные, телевизионные, связные, радиолокационные и цифровые приёмники разно-го назначения и различных диапазонов частот.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
	2	семестр		
Домашнее задание	8	8	8	24
Защита отчета	4	4	4	12
Опрос на занятиях	2	2	3	7
Отчет по лабораторной работе	2	2	2	6
Собеседование	2	2	2	6
Тест	5	5	5	15
Итого максимум за период	23	23	24	70
Экзамен				30
Нарастающим итогом	23	46	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (vyrop gozpo pygrogy yyo)
2 (2.20.2.20.2.20.2.20.2.20.2.20.2.20.2.	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Радиоприемные устройства: Учебное пособие для вузов / А. Г. Онищук, И. И. Забеньков, А. М. Амелин. - Минск: Новое знание, 2006. - 240 с.: ил. - (Техническое образование). - Библиогр.: с. 235-236. - ISBN 985-475-175-9: 108.90 р., 193.00 р., 173.00 р.: Библиотека ТУСУР,: Библиотека ТУСУР, (наличие в библиотеке ТУСУР - 54 экз.)

12.2. Дополнительная литература

- 1. Прием и обработка сигналов: Учебное пособие для вузов / К. Е. Румянцев. М.: Академия, 2004. 527[1] с.: табл., ил. (Высшее профессиональное образование. Радиоэлектроника). Библиогр.: с. 520-521. ISBN 5-7695-1459-0: (наличие в библиотеке ТУСУР 44 экз.)
- 2. Цифровая связь: Теоретические основы и практическое применение: Пер. с англ. / Б. Скляр; пер. Гроза Е. Г., пер. А. В. Назаренко, ред. А. В. Назаренко. 2-е изд. М.: Вильямс, 2003. 1099[4] с.: ил, табл. Библиогр. в конце глав. ISBN 5-8459-0386-6 (в пер.): Библиотека ТУСУР, (наличие в библиотеке ТУСУР 18 экз.)

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. «Радиоприемные устройства» [Электронный ресурс]: Сборник задач и упражнений / Мелихов С. В., Якушевич Г. Н., Пушкарев В. П. 2015. 94 с. Режим доступа: https://edu.tusur.ru/publications/4939 (дата обращения: 09.07.2018).
- 2. Радиоприемные устройства [Электронный ресурс]: Учебно-методическое пособие по лабораторным занятиям и самостоятельной работе / Желнерская С. П., Мелихов С. В., Пушкарев В. П. 2012. 74 с. Режим доступа: https://edu.tusur.ru/publications/2015 (дата обращения: 09.07.2018).
- 3. Радиоприемные устройства [Электронный ресурс]: Учебное пособие по курсовому проектированию / Пушкарев В. П. 2012. 278 с. Режим доступа: https://edu.tusur.ru/publications/1522 (дата обращения: 09.07.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалилов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

- 1. Научно образовательный портал ТУСУРа: https://edu.tusur.ru/
- 2. Рекомендуется использовать информационные, справочные и нормативные базы данных, к которым у ТУСУРа имеется доступ https://lib.tusur.ru/ru/resursy/bazy-dannyh"

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством по-

садочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Учебная лаборатория радиоэлектроники / Лаборатория ГПО

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 47, 407 ауд.

Описание имеющегося оборудования:

- Доска магнитно-маркерная;
- Коммутатор D-Link Switch 24 port;
- Компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. (12 шт.);
- Вольтметр В3-38 (7 шт.);
- Генератор сигналов специальной формы АКИП ГСС-120 (2 шт.);
- Кронштейн PTS-4002;
- Осциллограф EZ Digital DS-1150C (3 шт.);
- Осциллограф С1-72 (4 шт.);
- Телевизор плазменный Samsung;
- Цифровой генератор сигналов РСС-80 (4 шт.);
- Цифровой осциллограф GDS-810C (3 шт.);
- Автоматизированное лабораторное место по схемотехнике и радиоавтоматике (7 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- AWR Design Environment
- Mathworks Matlab
- Mathworks Simulink 6.5
- Micran Graphit
- Ques
- Scilab

Учебная лаборатория радиоэлектроники / Лаборатория ГПО

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 47, 407 ауд.

Описание имеющегося оборудования:

- Доска магнитно-маркерная;
- Коммутатор D-Link Switch 24 port;
- Компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. (12 шт.);
- Вольтметр В3-38 (7 шт.);
- Генератор сигналов специальной формы АКИП ГСС-120 (2 шт.);
- Кронштейн PTS-4002;
- Осциллограф EZ Digital DS-1150C (3 шт.);
- Осциллограф С1-72 (4 шт.);
- Телевизор плазменный Samsung;
- Цифровой генератор сигналов РСС-80 (4 шт.);
- Цифровой осциллограф GDS-810C (3 шт.);
- Автоматизированное лабораторное место по схемотехнике и радиоавтоматике (7 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- Google Chrome

- LibreOffice
- Micran Graphit
- PTC Mathcad13, 14
- Qucs
- Scilab

13.1.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория "Центр магистерской подготовки" / "Центр технологий National Instruments" учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 47, 416 ауд.

Описание имеющегося оборудования:

- Доска магнитно-маркерная;
- Коммутатор D-Link Switch 24 port;
- Экран с электроприводом DRAPER BARONET;
- Мультимедийный проектор;
- Генератор Г5-78;
- Генератор ГСС- 120;
- Генератор ГСС- 80;
- Измеритель иммитанса МНИПИ Е7-24;
- Измерительный комплекс;
- Комплект универсальных программируемых приемопередатчиков;
- Компьютер С540 (2 шт.);
- Ноутбук LIREBOOK АН532 (3 шт.);
- Ноутбук Fujisu;
- Компьютер intant i3001 (3 шт.);
- Осциллограф DS-1250C;
- Цифровой осциллограф GDS-810C;
- Цифровой комплекс учебно-научных лабораторий ГПО;
- Цифровой мультиметр;
- Сетевой адаптер (2шт.);
- Мультиметр цифровой АРРА 82;
- Установка для исследования нелинейных объектов при короткоимпульсном воздействии (1 шт.);
 - Лабораторные макеты для исследования приёмопередающих модулей СВЧ (5 шт.);
 - Комплект специализированной учебной мебели;
 - Рабочее место преподавателя.

Программное обеспечение:

- AWR Design Environment
- Adobe Reader
- National Instruments LabVIEW

13.1.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;

- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

Что представляет собой амплитудная характеристика приемника?

- 1. Зависимость коэффициента усиления от частоты.
- 2. Зависимость коэффициента усиления от амплитуды входного сигнала.
- 3. Зависимость выходного напряжения сигнала от входного.
- 3. Зависимость выходного тока от напряжения на нагрузке.

Зачем в приемнике используется регулировка полосы пропускания?

- 1. Для повышения чувствительности приемника.
- 2. Для повышения помехоустойчивости приемника.
- 3. Для расширения динамического диапазона приемника.
- 4. Для более точной настройки приемника на заданную частоту.

Назовите основные параметры входной цепи.

Варианты ответа:

- 1. Чувствительность, коэффициент усиления, коэффициент шума.
- 2. Коэффициент передачи, коэффициент шума, избирательность, диапазон час-тот
- 3. Коэффициент полезного действия, собственное затухание, коэффициент свя-зи.
- 4. Неравномерность АЧХ, нелинейность ФЧХ, полоса пропускания.

Зачем во входной цепи увеличивают количество контуров?

- 1. Для улучшения чувствительности приемника.
- 2. Для расширения динамического диапазона приемника.
- 3. Для повышения избирательности приемника

Назовите основные параметры усилителя радиочастоты.

- 1. Коэффициент шума, коэффициент усиления, избирательность.
- 2. Неравномерность АЧХ, нелинейность, коэффициент усиления.
- 3. Коэффициент полезного действия, стабильность частоты настройки, диапа-зон частот.
- 4. Динамический диапазон, коэффициент полезного действия, коэффициент усиления.

Как влияют внутреннее сопротивление антенны и входное сопротивление уси-лителя радиочастоты на входную цепь?

- 1. Уменьшают затухание цепи.
- 2. Увеличивают коэффициент передачи напряжения.
- 3. Увеличивают коэффициент перекрытия по частоте.
- 4. Увеличивают затухание, вносят дополнительную расстройку.

Чем вызвано изменение коэффициента усиления усилителя радиочастоты при его перестройке по диапазону частот?

- 1. Изменением добротности контура.
- 2. Изменением усилительных свойств активного элемента.
- 3.Изменением эквивалентного сопротивления контура.
- 4. Изменением устойчивого коэффициента усилени

Каково назначение преобразователя частоты?

- 1.Понижение частоты сигнала.
- 2. Подавление зеркального канала и гармоник гетеродина.
- 3. Ослабление зеркального и соседнего каналов приема.
- 4. Перенос спектра принимаемого сигнала на промежуточную частоту.
- 1. Каково назначение усилителя промежуточной частоты?
- 2. ослабление зеркального канала приема и усиление сигнала.
- 2. Увеличение отношения сигнал/шум.
- 3. Обеспечение работы АРУ.
- 4. Ослабление соседнего канала приема и основное усиление.

Что представляет собой детекторная характеристика амплитудного детектора?

- 1. Зависимость коэффициента детектирования от частоты.
- 2. Зависимость выходного сигнала от частоты.
- 3. Зависимость тока диода от амплитуды детектируемого напряжения при от-сутствии модуляции.
 - 4. Зависимость тока диода от амплитуды напряжения частоты модуляции.

Чем обусловлена необходимость построения супергетеродинного радиоприемника с двойным преобразованием частоты?

- 1. Обеспечением заданной чувствительности.
- 2. Обеспечением заданной избирательности по соседнему каналу.
- 3. Обеспечением заданной избирательности по зеркальному каналу.
- 4. Обеспечением динамического диапазона.

Каким типам радиоприемников присуще наличие канала прямого прохождения.

- 1. Прямого усиления.
- 2. Прямого преобразования.
- 3. Супергетеродинного типа.
- 4. Инфрадинного типа.

Чем определяется пространственная избирательность радиоприемника?

- 1. Избирательностью по зеркальному каналу. .
- 2. Типом радиоприемника.
- 3. Направленной антенной на источник сигнала.
- 4. Динамическим диапазоном.

Что характеризует коэффициент прямоугольности радиоприемника?

- 1. Чувствительность.
- 2. Избирательность по соседнему каналу.
- 3. Избирательность по зеркальному каналу.
- 4. Динамический диапазон.

Определите эффективную ширину спектра AM сигнала, если верхняя частота модуляции 5 кГц.

- 1. 5 кГц.
- 2. 10 кГп.
- 3. 15 кГц.
- 4. 25 кГц.

Что такое индекс частотной модуляции?

- 1. Отношение несущей радиочастоты к частоте модулирующего сигнала.
- 2. Произведение девиации радиочастоты и частоты модулирующего сигнала.
- 3. Отношение девиации радиочастоты к частоте модулирующего сигнала.
- 4. Отношение частоты модулирующего сигнала к девиации радиочастоты.

Что такое индекс фазовой модуляции?

- 1. Отношение девиации фазы к частоте модулирующего сигнала.
- 2. Произведение девиации фазы и частоты модулирующего сигнала.
- 3. Отношение девиации фазы к частоте модулирующего сигнала.
- 4. Девиация фазы модулированного радиосигнала при гармоническом модулирующем сигнале.

Что такое преобразование частоты радиосигнала?

- 1. Процесс усиления частотного спектра сигнала.
- 2. Процесс переноса полосы радиочастот, занимаемой сигналом, в другую часть частотного спектра.
 - 3. Процесс режекции заданной полосы радиочастот в спектре сигнала.
 - 4. Манипуляция несущей, при которой изменяемым параметром является фаза колебаний.

Что характеризует помехоустойчивость радиоприемника?

- 1. Способность усиления частотного спектра сигнала.
- 2. Способность переноса полосы радиочастот, занимаемой сигналом, в другую часть частотного спектра.
- 3. Способность выделения полосы частот, находящейся за пределами основного канала приема, в которой радиопомеха вызывает появление отклика, обусловленного прохождением ее на вход устройства демодуляции или детектирования.
 - 4. Способность радиоприемника противостоять мешающему действию радиопомех.

14.1.2. Экзаменационные вопросы

- 1. Радиоприемное устройство, его назначение и состав. Основные типы радиоприемников: детекторный, прямого усиления, супергетеродинный и прямого преобразования. Функциональные схемы и сравнительная характеристика.
- 2. Максимальная и реальная чувствительность радиоприемных устройств. Расчет реальной чувствительности.
- 3. Частотная избирательность радиоприемных устройств. Односигнальная и многосигнальная избирательность. Способы повышения избирательности по соседнему каналу и по побочным каналам радиоприема в супергетеродинном приемнике.
- 4. Динамический диапазон радиоприемника. Способы расширения динамического диапазона по основному и по соседнему каналам радиоприема.
- 5. Верность воспроизведения сообщения радиоприемным устройством. Линейные и нелинейные искажения непрерывного сообщения, кривая верности, искажения импульсных сигналов.
- 6. Внутренние шумы приемника: тепловые шумы активных сопротивлений, шумы усилительных приборов, шумы приемных антенн.
- 7. Коэффициент шума приемника: определение, расчет коэффициента шума многокаскадной схемы, методы уменьшения коэффициента шума приемника.
- 8. Входные цепи радиоприемников. Эквивалентная схема входной цепи. Одноконтурные перестраиваемые входные цепи.
- 9. Одноконтурные входные цепи приемника с фиксированной настройкой. Оптимальное согласование и оптимальное рассогласование входной цепи с антенной и входом первого каскада приемника.
 - 10. Селективные усилители: электрические характеристики, обобщенная эквивалентная схе-

ма селективного усилителя. Принципиальная схема одноконтурного транзисторного селективного усилителя, расчет ее основных параметров: коэффициента усиления, полосы пропускания, избирательности.

- 11. Схема и основные режимы работы селективного усилителя: режим непосредственного включения усилительного прибора в контур, режим максимального усиления при заданной полосе пропускания, режим фиксированного усиления при заданной полосе пропускания, режим согласования с нагрузкой.
- 12. Устойчивость селективных усилителей. Коэффициент устойчивости, устойчивый коэффициент усиления.
 - 13. Методы обеспечения устойчивости селективных усилителей.
- 14. Многокаскадные селективные усилители. Основные типы усилителей с сосредоточенной избирательностью.
- 15. Многокаскадные селективные усилители Основные типы усилителей с распределенной избирательностью и их сравнительная характеристика.
- 16. Многокаскадные селективные усилители. Основы расчета многокаскадных селективных усилителей на примере схемы с одноконтурными настроенными в резонанс каскадами.
- 17. Преобразователи частоты. Основные электрические характеристики. Общая теория преобразования частоты: обобщенная структурная схема преобразователя, уравнения прямого и обратного преобразования.
- 18. Побочные каналы приема супергетеродинного радиоприемника, необходимость и способы борьбы с ними.
- 19. Супергетеродинные свисты. Свистящие точки настройки. Методы уменьшения супергетеродинных свистов.
- 20. Схемы преобразователей частоты: транзисторный смеситель, диодный балансный смеситель, двойные балансные смесители. Достоинства балансных смесителей.
- 21. Усилители и преобразователи частоты СВЧ-диапазона на транзисторах. Схемы и характеристики. Интегральные приемные модули СВЧ-диапазона.
- 22. Полупроводниковые параметрические усилители и преобразователи частоты (ППУ): обобщенная эквивалентная схема двухконтурного ППУ, уравнения прямого и обратного преобразования, инвертирующий и неинвертирующий преобразователи.
- 23. Полупроводниковые параметрические регенеративные усилители: применение вентилей и циркуляторов, шумовые характеристики, криогенная техника.
- 24. Квантовые парамагнитные усилители СВЧ: принцип работы, функциональная схема, шумовые характеристики.
- 25. Амплитудные детекторы: основные электрические характеристики, общая теория детектирования. Принципиальные схемы последовательного и параллельного диодных детекторов, их применение
- 26. Амплитудные детекторы: особенности детектирования слабых и сильных сигналов. Методы расчета.
 - 27. Линейные искажения АМ-сигналов при детектировании.
 - 28. Нелинейные искажения АМ-сигналов при детектировании.
 - 29. Амплитудные ограничители: принцип работы, электрические характеристики и схемы.
 - 30. Фазовые детекторы: основные схемы и их характеристики.
 - 31. Частотные детекторы: основные схемы и их характеристики.
- 32. Автоматическая регулировка усиления (АРУ): назначение, основные типы систем АРУ и их сравнительная характеристика.
- 33. Схема АРУ с обратным регулированием: функциональная схема, характеристики звеньев, статические и динамические характеристики АРУ.
- 34. Схема АРУ с обратным регулированием: функциональная схема, искажения амплитудно-модулированного сигнала, устойчивость АРУ.
- 35. Типы АРУ в приемниках импульсных сигналов: временная, шумовая, инерционная, быстродействующая, мгновенная.
- 36. Автоматическая подстройка частоты (АПЧ): назначение, функциональная схема, характеристики звеньев, структурная схема, статические характеристики.

- 37. Автоматическая подстройка частоты (АПЧ): назначение, функциональная схема, характеристики звеньев, структурная схема, динамические характеристики
- 38. Автоматическая подстройка частоты (АПЧ): функциональная схема, искажения частотно-модулированного сигнала, устойчивость АПЧ. Флуктуационная ошибка слежения.
- 39. Система фазовой автоподстройки частоты (ФАПЧ): назначение, функциональная схема, характеристики звеньев. Свойства системы ФАПЧ с интегрирующим фильтром.
- 40. Система фазовой автоподстройки частоты (ФАПЧ): назначение, функциональная схема, характеристики звеньев. Свойства системы ФАПЧ с пропорционально-интегрирующим фильтром.
- 41. Основные применения ФАПЧ в радиоприемных устройствах: АПЧ гетеродинов, синтезаторы частот, узкополосные перестраиваемые фильтры, демодуляторы частотно-модулированных сигналов.
- 42. Настройка радиоприемника на станцию: переключение диапазонов, сопряжение контуров преселектора и гетеродина, варианты плавной и дискретной настройки.
 - 43. Автоматическая настройка радиоприемника на станцию.
- 44. Регулировка полосы пропускания усилителя промежуточной частоты приемника: назначение и способы регулировки полосы.
 - 45. Использование двойной цепи Юзвинского для регулировки полосы пропускания.
- 46. Способы автоматической регулировки полосы пропускания усилителя промежуточной частоты.
- 47. Прохождение аддитивной смеси сигнала и гармонической помехи через селективный тракт приемника.
- 48. Прохождение аддитивной смеси сигнала и импульсной помехи через селективный тракт приемника.
- 49. Прохождение аддитивной смеси сигнала и флуктуационной помехи через селективный тракт приемника.
 - 50. Блокирование сигнала помехой в селективном тракте приемника.
 - 51. Перекрестная модуляция в селективном тракте приемника.
 - 52. Эффект интермодуляции в селективном тракте приемника.
 - 53. Вторичная модуляция сигнала в селективном тракте приемника.
- 54. Прохождение аддитивной смеси сигнала и гармонической помехи через амплитудный детектор.
- 55. Прохождение аддитивной смеси сигнала и флуктуационной помехи через амплитудный детектор.
 - 56. Синхронный детектор и его свойства.
- 57. Прохождение аддитивной смеси сигнала и гармонической помехи через частотный детектор.
- 58. Прохождение аддитивной смеси сигнала и флуктуационной помехи через частотный детектор.
 - 59. Методы борьбы с сосредоточенными помехами.
 - 60. Амплитудно-частотные методы борьбы с импульсными помехами.
 - 61. Компенсационные методы борьбы с импульсными помехами.
 - 62. Методы борьбы с мультипликативными помехами.
- 63. Основные понятия оптимального приема сигналов на фоне флуктуационной помехи. Корреляционный и фильтрационный прием.
 - 64. Квазиоптимальная обработка аддитивной смеси сигнала и флуктуационной помехи.
 - 65. Радиоприемники амплитудно-модулированных и однополосных сигналов.
 - 66. Радиоприемники частотно-модулированных сигналов. Системы стереовещания
- 67. Виды сигналов с бинарной манипуляцией. Прием амплитудно-манипулированных сигналов.
- 68. Прием сигналов с частотной и с фазовой манипуляцией. Относительная фазовая манипуляция.
 - 69. Виды импульсной модуляции сигналов: АИМ, ВИМ, ШИМ и способы их демодуляции.
- 70. Представление сигналов в цифровой форме. Методы дискретизации полосовых сигналов. Спектр дискретного сигнала.

- 71. Вещественные и комплексные цифровые сигналы. Преобразователь Гильберта.
- 72. Цифровой косинусно-синусный генератор и его применение.
- 73. Цифровые преобразователи частоты.
- 74. Цифровой амплитудный детектор.
- 75. Цифровой синхронный детектор.
- 76. Цифровые фазовые детекторы.
- 77. Цифровой частотный детектор.
- 78. Цифровой амплитудный ограничитель.
- 79. Обобщенная структурная схема цифрового приемника. Цифровой приемник магистральной радиосвязи.

14.1.3. Темы опросов на занятиях

Содержание, учебной рабочей программы по дисциплине УПОС. Методические рекомендации. Рекомендуемая учебная литература.

Структурные схемы радиоканалов. Место и функции приёмников в радиоканалах. Классификация РПрУ. Радиосигналы, радиопомехи и электрические шумы (аналитическое, временное и спектральное представление сигналов и помех). Структурные схемы РПрУ: прямого усиления, прямого преобразования, супергетеродинного. Обработка радиосигналов в приёмниках. Основные электрические характеристики РПрУ: чувствительность и избирательность.

Схемы, характеристики и физическая реализация частотных фильтров, применяемых в приёмниках в различных диапазонах частот.

Электрические эквивалентные схемы и характеристики антенн. Назначение, электрические схемы и характеристики входных цепей (полоса, частотная избирательность, коэффициент передачи, коэффициент шума). Искажения сигналов во входных цепях.

Назначение, схемы и характеристики усилителей радиочастоты (коэффициент усиления, устойчивость, коэффициент шума). Линейные искажения сигналов и нелинейные эффекты (блокирование, перекрёстная модуляция, интермодуляция, вторичная модуляция) в усилителях радиочастоты.

Назначение, принцип действия, схемы и характеристики преобразователей частоты (амплитудно-частотная характеристика, дополнительные каналы приёма, частоты их и коэффициенты передачи). Выбор промежуточной частоты. Двойное преобразование частоты. Требования к амплитуде напряжения и стабильности частоты гетеродина. Сопряжение резонансных частот гетеродина и преселектора. Комбинационные, интерференционные и интермодуляционные искажения сигналов в преобразователях частоты.

Назначение, схемы, характеристики усилителей промежуточной частоты (коэффициент усиления, амплитудно-частотные и амплитудные характеристики). Искажения сигналов в усилителях промежуточной частоты.

Назначение, схемы, принцип действия, характеристики амплитудных детекторов (коэффициент передачи, детекторная и амплитудно-частотная характеристики). Линейные и нелинейные искажения сигналов в амплитудных детекторах. Схемы и характеристики импульсных и пиковых детекторов.

Схемы, принцип действия, коэффициенты передачи, детекторные характеристики фазовых и частотных детекторов и искажения сигналов в них.

Принцип действия, схемы и характеристики ручных и автоматических регулировок в РПрУ: частоты (настройки на частоту сигнала), усиления и полосы, подстройки частоты гетеродина. Влияние регулировок на искажения сигналов в приёмниках.

Разновидности модуляции, применяемые в узкополосных, широкополосных и сверхширокополосных системах цифровой связи. Амплитудная, фазовая, частотная манипуляция (ASK, PSK, FSK), дифференциальная фазо-вая манипуляция (DPSK), модуляция без разрыва фазы (CPM), квадратурная амплитудная модуляция (QAM), OFDM- модуляция, времяимпульсная мо-дуляция.

Канальное кодирование: М-арная передача сигнала, антиподные сигналы, ортогональные сигналы, Сопоставление влияния шумов в канале передачи на качество передаваемого сигнала в аналоговых и цифровых системах. Одиночные и групповые ошибки. Типы защиты от ошибок. Уменьшение количества ошибок добавлением избыточности. Теорема Шеннона. Пропускная способность канала связи. Свёрточное кодирование. Скремблирование.

• Специфика влияния искажений амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик канала связи в цифровых системах на качество передачи. Многолучёвость как одна из причин искажений АЧХ и ФЧХ. Оценка искажений в канале передачи. Трансверсальные, рекурсивные кор-ректоры. Разделение символов.

Допустимые уровни цифровых сигналов для различных видов модуляции. Методы измерения нелинейности преобразования: измерение интермодуляции (двухчастотный метод, метод с использованием полос шума), методы исследования нелинейности с использованием сверхширокополосных тестовых сигналов.

14.1.4. Вопросы на собеседование

- 1. Импульсно-кодовая модуляция. Система цифровой связи.
- 2. Многопозиционная амплитудная и фазовая манипуляция.
- 3. Квадратурная амплитудная и фазовая манипуляция.
- 4. Метод ортогонального частотного разделения несущих. Принципы формирования и демодуляции сигналов COFDM.
 - 5. Устройство приемника цифрового спутникового радио (системы DSR).

14.1.5. Темы домашних заданий

Исходные данные для домашнего задания:

- 1. Дана структурная схема супергетеродинного радиовещательного приемника (СГ-РВП) АМ-сигналов, а также ее CAD-модель в среде Multisim-12.
- 2. Индивидуальное техническое заданиее на курсовой проект каждому студенту, задан частотный диапазон для разработки СГ-РВП по приему и обработке АМ-сигналов.
- 3. Определены требования ГОСТ 5651-89 на избирательность СГ-РВП по соседнему и зеркальному каналам.
- 4. В соответствии с индивидуальным заданием каждым студентом разработаны САD-модели блоков широкополосного преселектора, а также тракта УПЧ.

Задание:

- 1. Воспользовавшись предложенной преподавателем шаблоном САD-модели схемы СГ-РВП, адоптировать ее к требованиям Т3-КП.
- 2. С помощью разработанной модели СГ-РВП провести измерение избирательности по соседнему каналу и проверить ее на соответствии с требования ГОСТ 5651-89.
- 3. С помощью разработанной модели СГ-РВП провести измерение избирательности по зеркальному каналу и проверить ее на соответствии с требования ГОСТ 5651-89.
 - 4. Произвести адаптацию полученной САД-модели к требованиям ГОСТ 5651-89 и ТЗ-КП.

14.1.6. Темы лабораторных работ

Исследование входных цепей

Исследование усилителя радиочастоты

Исследование преобразователя частоты

Исследование амплитудного детектора

14.1.7. Темы курсовых проектов / курсовых работ

Тема проекта: Бытовой радиовещательный приемник Б-РВП).

Назначение: бытовой радиоэлектронный аппарат предназначен для приема и воспроизведения радиовещательных программ в соответствии с ГОСТ 5651-89

- 1. Исходные данные к проекту:
- 1.1. Диапазон частот КВ (3,65-3,800 МГц);
- 1.2. Условия эксплуатации стационарный;
- 1.3. Группа сложности высшая;
- 1.4. Чувствительность, ограниченная шумами,

при отношении сигнал/шум не менее - 20 дБ

по напряжению со входа для внешней антенны,

мкВ, не хуже - 30;

- 1.5. Односигнальная избирательность по соседнему каналу
- при расстройке ± 9 к Γ ц, д \overline{b} , не менее 60;
- 1.6. Односигнальная избирательность по

зеркальному каналу, дБ, не менее: 30

- 1.7. Глубина ручной регулировки усиления, дБ 50.
- 1.8. Действие ручной автоматической регулировки усиления:

изменение уровня сигнала на входе, дБ, - 30

изменение уровня сигнала на выходе,

дБ, не более - 10

- 1.9. Технологическая платформа структурной схемы РВП аналоговый инфрадинный приемник с с технологией программно-определяемого радиоприема (Software Defined Radio).
 - 2. Перечень вопросов, подлежащих разработке:
 - 2.1. Разработку структурной схемы радиоприемника и ее эскизный расчет;
- 2.2. Электрический расчет принципиальной схемы и симуляция работы в среде к.-л. САО-системы следующих блоков приёмника:

Усилитель высокой частоты и преселектор РВП;

Первый преобразователь;

Фильтр усилителя первой промежуточной частоты;

- 2.3. Сравнение расчётных характеристик приёмника с заданными ТЗ.
- 3. Перечень обязательных чертежей:
- 3.1. Структурная схема приёмника;
- 3.2. Принципиальная и монтажная схемы перечисленных выше каскадов приёмника, выполненные в системе P-Cad.
 - 3.3. Перечень элементов.
 - 2.4. Топологическая схема и АЧХ ПАВ-фильтра.
 - 4. Перечень обязательных чертежей:
 - 3.4. Структурная схема приёмника;
 - 3.5. Принципиальная схема преселектора и ПрЧ приёмника,
 - 3.6. Перечень элементов.
 - 5. Список литературы:
- 4.1. Бакеев Д.А., Дуров А.А., Ильюшко С.Г., Марков В.А., Парфёнкин Прием и обработка информации: Курсовое проектирование устройств приема и обработки информации: Учебное пособие. Петропавловск-Камчатский. 2007.
 - 4.2. ГОСТ 5651-89. Аппаратура радиоприемная бытовая. Общие технические условия.
- 4.3. Фомин Н. Н., Буга Н. Н., Головин О. В. и др. Под редакцией Фомина Н. Н. Радиоприёмные устройства: учебник для вузов.— М.: «Горячая линия» Телеком, 2007. 520с.

Тема проекта: Бытовой радиовещательный приемник Б-РВП).

Назначение: бытовой радиоэлектронный аппарат предназначен для приема и воспроизведения радиовещательных программ в соответствии с ГОСТ 5651-89

- 1. Исходные данные к проекту:
- 1.1. Диапазон частот КВ (3,65-3,800 МГц);
- 1.2. Условия эксплуатации стационарный;
- 1.3. Группа сложности высшая;
- 1.4. Чувствительность, ограниченная шумами,

при отношении сигнал/шум не менее - 20 дБ

по напряжению со входа для внешней антенны,

мкВ, не хуже - 30;

1.5. Односигнальная избирательность по соседнему каналу

при расстройке ± 9 к Γ ц, д \overline{b} , не менее - 60;

1.6. Односигнальная избирательность по

зеркальному каналу, дБ, не менее: 30

- 1.7. Глубина ручной регулировки усиления, дБ 50.
- 1.8. Действие ручной автоматической регулировки усиления:

изменение уровня сигнала на входе, дБ, - 30

изменение уровня сигнала на выходе,

дБ, не более - 10

1.9. Технологическая платформа структурной схемы РВП - аналоговый инфрадинный при-

емник с с технологией программно-определяемого радиоприема (Software Defined Radio).

- 2. Перечень вопросов, подлежащих разработке:
- 2.1. Разработку структурной схемы радиоприемника и ее эскизный расчет;
- 2.2. Электрический расчет принципиальной схемы и симуляция работы в среде к.-л. САО-системы следующих блоков приёмника:

Усилитель высокой частоты и преселектор РВП;

Первый преобразователь;

Фильтр усилителя первой промежуточной частоты;

- 2.3. Сравнение расчётных характеристик приёмника с заданными Т3.
- 3. Перечень обязательных чертежей:
- 3.1. Структурная схема приёмника;
- 3.2. Принципиальная и монтажная схемы перечисленных выше каскадов приёмника, выполненные в системе P-Cad.
 - 3.3. Перечень элементов.
 - 2.4. Топологическая схема и АЧХ ПАВ-фильтра.
 - 4. Перечень обязательных чертежей:
 - 3.4. Структурная схема приёмника;
 - 3.5. Принципиальная схема преселектора и ПрЧ приёмника,
 - 3.6. Перечень элементов.
 - 5. Список литературы:
- 4.1. Бакеев Д.А., Дуров А.А., Ильюшко С.Г., Марков В.А., Парфёнкин Прием и обработка информации: Курсовое проектирование устройств приема и обработки информации: Учебное пособие. Петропавловск-Камчатский. 2007.
 - 4.2. ГОСТ 5651-89. Аппаратура радиоприемная бытовая. Общие технические условия.
- 4.3. Фомин Н. Н., Буга Н. Н., Головин О. В. и др. Под редакцией Фомина Н. Н. Радиоприёмные устройства: учебник для вузов.— М.: «Горячая линия» Телеком, 2007.-520c.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями

здоровья и инвалидов

эдеревы и инванидев		
Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;

- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.