МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	`	УТВЕРЖ	КДАЮ	
Дирек	тор д	епартам	ента образо	эвания
			П. Е. Тро	НКС
‹ ‹	>>		20	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Устройства генерирования и формирования сигналов

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.01 Радиотехника

Направленность (профиль) / специализация: **Радиотехнические средства передачи, приема и обработки сигналов**

Форма обучения: заочная (в том числе с применением дистанционных образовательных технологий)

Факультет: **ФДО**, **Факультет** дистанционного обучения Кафедра: **РСС**, **Кафедра** радиоэлектроники и систем связи

Курс: **4** Семестр: **7**

Учебный план набора 2018 года

Распределение рабочего времени

$N_{\underline{0}}$	Виды учебной деятельности	7 семестр	Всего	Единицы
1	Самостоятельная работа под руководством преподавателя	14	14	часов
2	Лабораторные работы	8	8	часов
3	Контроль самостоятельной работы	4	4	часов
4	Контроль самостоятельной работы (курсовой проект / курсовая работа)	4	4	часов
5	Всего контактной работы	30	30	часов
5	Самостоятельная работа	141	141	часов
7	Всего (без экзамена)	171	171	часов
8	Подготовка и сдача экзамена	9	9	часов
)	Общая трудоемкость	180	180	часов
			5.0	3.E.

Документольные рабобыей темпериой подписью

Информация о владельце:

ФИО: Шелупанов А А Г Курсовая работа: 7 семестр

Должность: Ректор

Дата подписания: 28.02.2018 Уникальный программный ключ:

c53e145e-8b20-45aa-9347-a5e4dbb90e8d

Гомск 2018

Рассмотрена	и одс	брена на	заседании	кафедры
протокол №	54	от «_15	»6	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

ственного образовательного стандарта высшего	иена с учетом требований федерального государобразования (ФГОС ВО) по направлению подготвержденного 06.03.2015 года, рассмотрена и одо20 года, протокол №
Разработчики:	
Доцент каф. ТУ	А. Г. Ильин
Ст. преподаватель каф. ТУ	A. В. Бусыгина
Заведующий обеспечивающей каф. ТУ	<u> </u>
Рабочая программа дисциплины согласова	ана с факультетом и выпускающей кафедрой:
Декан ФДО	И. П. Черкашина
Заведующий выпускающей каф. PCC	А. В. Фатеев
Эксперты:	
Доцент кафедры технологий элек- тронного обучения (ТЭО)	Ю. В. Морозова
Доцент кафедры телевидения и управления (ТУ)	А. Н. Булдаков
Старший преподаватель кафедры радиоэлектроники и систем связи (PCC)	Ю. В. Зеленецкая

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Целью дисциплины "Устройства генерирования и формирования сигналов" (УГФС) является изучение методов создания первичных колебаний с необходимой стабильностью частоты, с требуемым видом модуляции и качественными показателями, с требуемой мощностью выходного сигнала.

1.2. Задачи дисциплины

— Изучение методов создания первичных колебаний с необходимой стабильностью частоты, с требуемым видом модуляции и качественными показателями, с требуемой мощностью выходного сигнала.

2. Место дисциплины в структуре ОПОП

Дисциплина «Устройства генерирования и формирования сигналов» (Б1.В.ОД.4) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Инженерная и компьютерная графика, Электроника.

Последующими дисциплинами являются: Проектирование средств передачи, приема и обработки сигналов (ГПО-3), Электромагнитная совместимость радиоэлектронных систем.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-3 способностью решать задачи анализа и расчета характеристик электрических цепей;
- ПК-6 готовностью выполнять расчет и проектирование деталей, узлов и устройств радиотехнических систем в соответствии с техническим заданием с использованием средств автоматизации проектирования;

В результате изучения дисциплины обучающийся должен:

- знать основные принципы построения устройств генерирования и формирования сигналов (УГФС), методы модуляции в современных радиопередающих устройствах (РПДУ), цепи межкаскадной связи и выходные колебательные системы (ОПК-3), методы расчёта каскадов УГФС, основы инженерного расчета генераторов с внешним возбуждением (ГВВ) (ПК-6).
- **уметь** составлять структурные и принципиальные схемы устройств генерирования и формирования сигналов (УГФС), формулировать требования к ним, проектировать их по заданным показателям качества (ОПК-3); рассчитывать режимы отдельных каскадов УГФС; выполнять расчет и проектирование принципиальных схем отдельных узлов УГФС в соответствии с техническим заданием с использованием средств автоматизации проектирования (ПК-6);
- **владеть** современными методиками расчета и проектирования деталей, узлов и устройств радиотехнических систем; первичными навыками разработки проектной и технической документации (ПК-6).

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в табли- це 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		7 семестр
Контактная работа (всего)	30	30
Самостоятельная работа под руководством преподавателя (СРП)	14	14
Лабораторные работы	8	8
Контроль самостоятельной работы (КСР)	4	4

Контроль самостоятельной работы (курсовой проект / курсовая работа) (КСР (КП/КР))	4	4
Самостоятельная работа (всего)	141	141
Подготовка к контрольным работам	49	49
Выполнение курсового проекта / курсовой работы	50	50
Оформление отчетов по лабораторным работам	4	4
Подготовка к лабораторным работам	4	4
Самостоятельное изучение тем (вопросов) теоретической части курса	34	34
Всего (без экзамена)	171	171
Подготовка и сдача экзамена	9	9
Общая трудоемкость, ч	180	180
Зачетные Единицы	5.0	

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	СРП, ч	Лаб. раб., ч	КСР, ч	КСР (КП/К Р), ч	Сам. раб., ч	Всего часов (без экзаме на)	Формируем ые компетенции
	,	7 семест	rp .				
1 Основные технические показатели и функциональные схемы радиопередающих устройств (РПдУ).	0	0	4	4	14	14	ОПК-3, ПК- 6
2 Генераторы с внешним возбуждением (ГВВ).	4	4			18	26	ОПК-3, ПК- 6
3 Цепи межкаскадной связи и вы- ходные колебательные системы	0	0			14	14	ОПК-3, ПК- 6
4 Автогенераторы. Синтезаторы частот. Возбудители РПдУ.	0	0			19	19	ОПК-3, ПК- 6
5 Модуляция	0	4			13	17	ОПК-3, ПК- 6
6 Проектирование РПдУ	10	0			63	73	ОПК-3, ПК- 6
Итого за семестр	14	8	4	4	141	171	
Итого	14	8	4	4	141	171	

5.2. Содержание разделов дисциплины (самостоятельная работа под руководством преподавателя)

Содержание разделов дисциплин (самостоятельная работа под руководством преподавателя) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (самостоятельная работа под руководством препо-

давателя)

Названия разделов	Содержание разделов дисциплины (самостоятельная работа под руководством преподавателя)	Трудоемкость,	Формируемые компетенции
2 Генераторы с внешним	энергетический и электрический расчёт ГВВ	4	ОПК-3, ПК-6
возбуждением (ГВВ).	Итого	4	
6 Проектирование РПдУ	проектирование радиопередатчика в соответствии с индивидуальным заданием: расчет и обоснование структуры передатчика, расчет оконечного каскада, расчет модулируемого каскада	10	ОПК-3, ПК-6
	Итого	10	
Итого за семестр		14	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин							
	1	2	3	4	5	6		
Предшествующие дисциплины								
1 Инженерная и компьютерная графика					+			
2 Электроника	+	+		+	+			
По	следующи	е дисципл	ины					
1 Проектирование средств передачи, приема и обработки сигналов (ГПО-3)	+					+		
2 Электромагнитная совместимость радиоэлектронных систем	+		+		+	+		

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Компете		F				
нции	СРП	Лаб. раб.	КСР	КСР (КП/КР)	Сам. раб.	Формы контроля

ОПК-3	+	+	+	+	+	Контрольная работа, Экзамен, Проверка контрольных работ, Отчет по лабораторной работе, Тест, Отчет по курсовому проекту / курсовой работе
ПК-6	+	+	+	+	+	Контрольная работа, Экзамен, Проверка контрольных работ, Отчет по лабораторной работе, Тест, Отчет по курсовому проекту / курсовой работе

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

Названия разделов	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
2 Генераторы с внешним возбуждением (ГВВ).	ИССЛЕДОВАНИЕ НАГРУЗОЧНЫХ И РЕЗОНАНСНЫХ ХАРАКТЕРИСТИК ТРАНЗИСТОРНОГО КАСКАДА	4	ОПК-3, ПК-6
	Итого	4	
5 Модуляция	ИССЛЕДОВАНИЕ АВТОГЕНЕРАТОРА С КВАРЦЕВЫМ РЕЗОНАТОРОМ	4	ОПК-3, ПК-6
	Итого	4	
Итого за семестр		8	

8. Контроль самостоятельной работы

Виды контроля самостоятельной работы приведены в таблице 8.1.

Таблица 8.1 – Виды контроля самостоятельной работы

	Two miga of Biggs Romposis Carlot Control Biggs				
№	Вид контроля самостоятельной работы	Трудоемкость (час.)	Формируемые компетенции		
	7 семестр				
1	Контрольная работа с автоматизированной проверкой	2	ОПК-3, ПК-6		
2	Контрольная работа с автоматизированной проверкой	2	ОПК-3, ПК-6		
Итого		4			

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Царрания разнанар	Виды самостоятельной	Трудоемкость,	Формируемые	Формал контроля
Названия разделов	работы	Ч	компетенции	Формы контроля

	7	семестр		
1 Основные технические показатели и	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ОПК-3, ПК-6	Контрольная работа, Тест, Экзамен
функциональные схемы радиопередающих	Подготовка к контрольным работам	8		
устройств (РПдУ).	Итого	14		
2 Генераторы с внешним возбуждением	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ОПК-3, ПК-6	Контрольная работа, Отчет по лабораторной работе,
(ГВВ).	Подготовка к лабораторным работам	2		Тест, Экзамен
	Оформление отчетов по лабораторным работам	2		
	Подготовка к контрольным работам	8		
	Итого	18		
3 Цепи межкаскадной связи и выходные	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ОПК-3, ПК-6	Контрольная работа, Тест, Экзамен
колебательные системы	Подготовка к контрольным работам	8		
	Итого	14		
4 Автогенераторы. Синтезаторы частот.	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ОПК-3, ПК-6	Контрольная работа, Отчет по лабораторной работе,
Возбудители РПдУ.	Подготовка к лабораторным работам	2		Тест, Экзамен
	Оформление отчетов по лабораторным работам	2		
	Подготовка к контрольным работам	9		
	Итого	19		
5 Модуляция	Самостоятельное изучение тем (вопросов) теоретической части курса	5	ОПК-3, ПК-6	Контрольная работа, Тест, Экзамен
	Подготовка к контрольным работам	8		
	Итого	13		
6 Проектирование РПдУ	Самостоятельное изучение тем (вопросов) теоретической части курса	5	ОПК-3, ПК-6	Контрольная работа, Отчет по курсовому проекту / кур-
	Выполнение курсового проекта / курсовой работы	50		совой работе, Тест, Экзамен

	Подготовка к контрольным работам	8		
	Итого	63		
	Выполнение контрольной работы	4	ОПК-3, ПК-6	Контрольная работа
Итого за семестр		141		
	Подготовка и сдача экзамена	9		Экзамен
Итого		150		

10. Контроль самостоятельной работы (курсовой проект / курсовая работа)

Трудоемкость самостоятельной работы и формируемые компетенции в рамках выполнения курсового проекта / курсовой работы представлены таблице 10.1.

Таблица 10.1 – Трудоемкость самостоятельной работы и формируемые компетенции в рамках вы-

полнения курсового проекта / курсовой работы

Вид самостоятельной работы	Трудоемкость,	Формируемые
	Ч	компетенции
7 семестр		
Выполнение курсовой работы подразумевает расчет и констру-	4	ОПК-3, ПК-6
ирование передатчика в соответствии с вариантом задания и написание отчета по курсовой работе		
Итого за семестр	4	

10.1. Темы курсовых проектов / курсовых работ

Примерная тематика курсовых проектов / курсовых работ:

1. Расчёт и конструирование радиовещательного передатчика.

- 2. Расчёт и конструирование телевизионного передатчика сигналов изображения.

- 3. Расчёт и конструирование усилителя мощности сигналов COFDM

4. Расчёт и конструирование телевизионного передатчика сигналов звукового сопровождения.

- 5. Расчёт и конструирование передатчика для цифрового радиовещания

- 6. Расчёт и конструирование передатчика для УКВ ЧМ-стереовещания.

- 7. Расчёт и конструирование передатчика для цифрового телевизионного вещания.

11. Рейтинговая система для оценки успеваемости обучающихся Рейтинговая система не используется.

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Устройства генерирования и формирования сигналов [Электронный ресурс]: учебное пособие / А. Д. Бордус. – Томск : ФДО, ТУСУР, 2018. – 261 с. Доступ из личного кабинета студента. — Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 07.09.2018).

12.2. Дополнительная литература

1. Формирование и передача сигналов. Часть 1 [Электронный ресурс]: Курс лекций / А. С.

- Шостак 2012. 154 с. Доступ из личного кабинета студента Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 07.09.2018).
- 2. Формирование и передача сигналов. Часть 2 [Электронный ресурс]: Курс лекций / А. С. Шостак 2012. 90 с. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 07.09.2018).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Ильин А.Г., Бордус А.Д., Казанцев Г.Д., Пороховниченко А.М. Устройства формирования сигналов [Электронный ресурс]: Учебное методическое пособие. Томск: кафедра ТУ, ТУСУР, 2012. 142 с. (по самостоятельной работе разделы 1 5). Доступ из личного кабинета студента Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 07.09.2018).
- 2. Устройства генерирования и формирования сигналов [Электронный ресурс]: методические указания по выполнению лабораторных работ для студентов направления подготовки 11.03.01 «Радиотехника» и 11.03.02 «Инфокоммуникационные технологии и системы связи» (уровень бакалавриата) / А. Д. Бордус. Томск: ФДО, ТУСУР, 2018. 38 с. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library (дата обращения: 07.09.2018).
- 3. Бордус А. Д. Устройства генерирования и формирования сигналов : электронный курс / А. Д. Бордус. Томск ТУСУР, ФДО, 2018. Доступ из личного кабинета студента
- 4. Ильин А. Г. Устройства генерирования и формирования сигналов [Электронный ресурс]: методические указания по организации самостоятельной работы для студентов заочной формы обучения технических направлений, обучающихся с применением дистанционных образовательных технологий / А. Г. Ильин, А. А. Гельцер. Томск : ФДО, ТУСУР, 2018. Доступ из личного кабинета студента Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 07.09.2018).
- 5. Устройства генерирования и формирования сигналов [Электронный ресурс]: методические указания по выполнению курсовой работы (проекта) для студентов ФДО направления подготовки 11.03.01 «Радиотехника» (уровень бакалавриата) / А. Д. Бордус.— Томск: ФДО, ТУСУР, 2018. 165 с. Доступ из личного кабинета студента Режим доступа: https://study.tusur.ru/study/library (дата обращения: 07.09.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется обращаться к базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/re/resursy/bazy-dannyh

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение дисциплины

Кабинет для самостоятельной работы студентов

учебная аудитория для проведения занятий лабораторного типа, помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Коммутатор MicroTeak;
- Компьютер PENTIUM D 945 (3 шт.);
- Компьютер GELERON D 331 (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-zip
- Google Chrome
- Kaspersky Endpoint Security 10 для Windows
- Microsoft Windows
- OpenOffice

13.1.2. Материально-техническое и программное обеспечение для лабораторных работ

Кабинет для самостоятельной работы студентов

учебная аудитория для проведения занятий лабораторного типа, помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Коммутатор MicroTeak;
- Компьютер PENTIUM D 945 (3 шт.);
- Компьютер GELERON D 331 (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-zip
- Google Chrome
- Kaspersky Endpoint Security 10 для Windows
- Microsoft Windows
- OpenOffice
- Ques (с возможностью удаленного доступа)

13.1.3. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

Тестовые задания:

- 1. Автогенератор это устройство, преобразующее энергию ...
- -источника питания в энергию ВЧ-колебаний используя внешнее возбуждение на входе.
- -источника питания в энергию ВЧ-колебаний без внешнего воздействия.
- -внешнего возбуждения в энергию ВЧ-колебаний.
- -источника питания в энергию ВЧ-колебаний и управления этими колебаниями с целью передачи информации.
- 2. Плавное нарастание колебаний в автогенераторе при включении питания возможно в случае, когда...
 - -увеличение энергии в контуре меньше, чем поступление её от транзистора.
 - -потери энергии в контуре больше, чем поступление её от транзистора.
 - -потери энергии в контуре больше, чем поступление её от источника питания.
 - -потери энергии в контуре меньше, чем поступление её от транзистора.
- 3. Как уменьшить нелинейные искажения огибающей АМ-сигнала при коллекторной модуляции?
 - -Увеличить $U\Omega$.
 - -Увеличить R1
 - -Уменьшить ЕК.

- -Уменьшить R1.
- 4. Перестраиваемые генераторы, управляемые напряжением (ГУН), выполняют по схеме

..

- -ёмкостной трёхточки с контуром между коллектором и базой.
- -индуктивной трёхточки с контуром между эмиттером и коллектором.
- -ёмкостной трёхточки с контуром между эмиттером и коллектором.
- -индуктивной трёхточки с контуром между коллектором и базой.
- 5. Радиопередающее устройство комплекс радиотехнических средств, предназначенный для преобразования энергии....
 - -источника питания в энергию ВЧ-колебаний используя внешнее возбуждение на входе.
 - -источника питания в энергию ВЧ-колебаний без внешнего воздействия.
 - -внешнего возбуждения в энергию ВЧ-колебаний.
- -источников питания в энергию ВЧ-колебаний и управления этими колебаниями с целью передачи информации.
- 6. В каком режиме работает генератор с внешним возбуждением, если колебательный контур в цепи транзистора настроен на n≥2 гармонику импульсов коллекторного тока.
 - -усилитель мощности.
 - -автогенератор.
 - -синтезатор частоты.
 - -умножитель частоты.
- 7. Динамическими характеристиками генератора с внешним возбуждением называются зависимости ...
 - -напряжения одного из электродов активного элемента от тока соответствующего электрода в динамическом режиме.
- -тока одного из электродов активного элемента от тока соответствующего электрода в динамическом режиме.
- -напряжения одного из электродов активного элемента от напряжения соответствующего электрода в динамическом режиме.
- -тока одного из электродов активного элемента от напряжения на соответствующем электроде в динамическом режиме.
 - 8. При однополосной модуляции изменяются одновременно...
 - -амплитуда и частота ВЧ колебания.
 - -амплитуда и фазовый угол ВЧ колебания.
 - -частота и фазовый угол ВЧ колебания.
 - -фазовый угол ВЧ колебания.
- 9. В выходной цепи генератора с внешним возбуждением, полезная мощность высокочастотных колебаний, передаваемых в контур P=xUI, где x коэффициент, U амплитуда переменного напряжения на коллекторе, I амплитуда первой гармоники коллекторного тока
 - -x=1/2.
 - -x=1.
 - -x=3/2.
 - x = 2.
- 10. В каком режиме работает устройство, если колебательный контур в цепи транзистора настроен на первую гармонику импульсов коллекторного тока?
 - -усилитель мощности.
 - -автогенератор.
 - -синтезатор частоты.
 - -умножитель частоты.
- 11. Определите мощность, рассеиваемую стоком транзистора, если подводимая мощность равна 200 Вт, а электронный КПД равен:
 - $\eta = 80\%;$
 - 85%;
 - 90%;
 - 95%.

- 12. Электронный КПД генератора равен 60%, мощность питания коллекторной цепи 36 Вт, сопротивление ветвей нагруженного контура равно гн = 3 Ом. Определите колебательную мощность.
 - 21,6 Вт
 - 49 Bt
 - 216 Вт
 - 4 B_T.
- 13. Усилитель работает на колебательную систему с резонансным сопротивлением 90 Ом. Измерены: постоянная составляющая коллекторного тока 0,2 А, напряжение питания коллекторной цепи 35 В, амплитуда коллекторного напряжения 30 В. Определите электронный КПД.
 - -0.71
 - 0,5
 - 0,94
 - 0,3.
- 14. Определите мощность в нагрузке усилителя, если колебательная мощность 84 Вт, эффективное значение тока контура 2 А, сопротивление потерь контура 4 Ом.
 - 68 Вт
 - 8 B_T
 - 6 Вт
 - 6,8 Bt.
- 15. Определите КПД генератора, если напряжение питания коллектора равно 20 В, постоянная составляющая тока коллектора 1,5 А, резонансное сопротивление нагруженного контура 7,6 Ом, эффективное напряжение на контуре 13,5 В, мощность в нагрузке 21,6 Вт.
 - -0.72
 - 0.2
 - 0,52
 - 0,79.
- 16. Мощность потерь на аноде лампы равна 600 Вт, амплитуда тока в контуре 20 А, постоянная составляющая анодного тока 1 А, напряжение анодного питания 3000 В. Определите колебательную мошность.
 - 2400 B_T
 - 240 Вт
 - 24 B_T
 - 300 B_T
- 17. Постоянная составляющая тока коллектора равна 1A, Uк = 25 B, Eк = 27 B, угол отсечки коллекторного тока 90 градусов. Определите мощность, рассеиваемую коллектором.
 - 7,4 B_T
 - 7,1 Вт
 - 4,4 B_T
 - 0,4 B_T.
- 18. Определите мощность, рассеиваемую анодом лампы усилителя, если мощность питания анодной цепи равна 5 кВт, мощность в нагрузке 4 кВт, амплитуда анодного напряжения 3 кВ, резонансное сопротивление ненагруженного анодного контура равно 20 кОм.
 - 775 Вт
 - 7,75 Вт
 - 77 B_T
 - 75 Вт.
- 19. Определите амплитуду тока в контуре, если амплитуда напряжения на контуре равна 10 кВ, емкость контура равна 500 пФ, резонансная частота 2 МГц.
 - 63 A
 - 3 A
 - 6,3 A
 - 0,63 A.
 - 20. Транзисторный генератор потребляет ток 0,8 А при напряжении питания 25 В. Мощ-

ность потерь в транзисторе равна 4 Вт, из них 1 Вт составляют потери в цепи базы. Определите колебательную мощность при коэффициенте использования коллекторного напряжения 0,9. - 17 Вт - 1,7 Вт - 170 Вт - 0,17 Вт.
14.1.2. Экзаменационные тесты
1. Что происходит в автогенераторе в режиме стационарных колебаний при небольшом нарушении баланса фаз?
1) Увеличивается напряжение на выходе.
2) Изменяется частота генерации.
3) Напряжение на выходе падает.
4) Ток в выходной цепи возрастает.
2. Чему равна максимальная кратность умножения в умножителях на активном элементе?
1) 3.
2) 4.
3) 5.
4) 6.
3. Достоинство умножителя частоты на активном элементе, по сравнению со схемой на пассивном элементе, в том, что
1)коэффициент усиления по току больше единицы
2)коэффициент усиления по току равен единице
3) коэффициент усиления по мощности больше единицы
4)коэффициент усиления по току меньше единицы
4. Характеристика преобразующего элемента в умножителе частоты должна быть:
1)нелинейной
2)линейной
3)пологой
4)с высокой крутизной

5. В какой схеме сумматора мощности нелинейные искаженияменьше?

1)В двухтактной схеме.

- 2) В однотактной схеме.
- 3) В схеме с нелинейным элементом.
- 4) В схеме с емкостной обратной связью.
- 6. Какая из схем в среднем диапазоне частот имеет наибольший коэффициент усиления по мощности?
 - ОЭ.
 - 2) OK.
 - 3) ОБ.
 - 4) ОК и ОБ.
- 7. Как изменяются коэффициент фильтрации и к.п.д. сложных колебательных систем с увеличением числа звеньев?
 - 1)Коэффициент фильтрации уменьшается.
 - 2)К.п.д. увеличивается.
 - 3) Коэффициент фильтрации увеличивается, к.п.д. уменьшается.
 - 4) Коэффициент фильтрации уменьшается, к.п.д. увеличивается.
 - 8. Как отражается на режиме усилителя мощности рассогласование с нагрузкой?
 - 1)Приводит к уменьшению мощности в нагрузке.
 - 2)Обеспечивает выход на оптимальный угол отсечки.
 - 3)Приводит к снижению мощности рассеяния.
 - 4)Приводит к снижению напряженности режима.
- 9. Как отражается на режиме усилителя мощности уменьшение коэффициента включения коллектора в колебательную цепь?
 - 1)Обеспечивает выход на критический режим.
 - 2)Обеспечивает выход на оптимальный угол отсечки.
 - 3)Приводит к снижению мощности рассеяния.
 - 4)Приводит к снижению напряженности режима.
 - 10. Расстройка колебательной цепи усилителя мощности приводит:
 - 1) к выходу на оптимальный угол отсечки

- 2) к выходу на оптимальный угол отсечки3) к снижению мощности рассеяния
- 4) к росту мощности рассеяния
- 11. Назначение колебательной системы для усилителя мощности в том, что она позволяет:
- 1) задать необходимую амплитуду напряжения возбуждения
- 2) задать критический режим и обеспечить требуемую фильтрацию
- 3) обеспечить требуемое напряжение питания
- 4) обеспечить усиление сигнала
- 12. Оптимальный угол отсечки позволяет обеспечить:
- 1) режим усилителя мощности с высоким к.п.д.
- 2) режим усилителя мощности с низким к.п.д.
- 3) режим усилителя мощности со средним к.п.д.
- 4) недонапряженный режим
- 13. Увеличение запирающего смещения на управляющем электроде генератора с внешним возбуждением, работающего в критическом режиме, приводит:
 - 1) к увеличению сопротивления
 - 2) к уменьшению выходного тока
 - 3) к уменьшению напряженности режима
 - 4) к увеличению выходного тока
- 14. Увеличение питающего напряжения генератора с внешним возбуждением, работающего в критическом режиме приводит:
 - 1) к увеличению сопротивления
 - 2) к уменьшению напряженности режима
 - 3) к уменьшению выходного тока
 - 4) к увеличению выходного тока
- 15. При передаче сигнала изображения в телевизионных передатчиках применяется тип модуляции:
 - 1) однополосный
 - 2) фазовый

	4) частотный
налом	16. Полоса частот, занимаемых телевизионным сигналом изображения, по сравнению с сиг звукового сопровождения, требуется:
	1) уже
	2) такая же
	3) шире
	17. При переходе от «мягкого» коммутатора к «жесткому» в импульсном передатчике к.п.д
	1) увеличится
	2) уменьшится
	3) останется неизменным
	18. Какой тип модулятора применяют при формировании однополосного сигнала?
	1) Импульсный.
	2) Амплитудный.
	3) Балансный.
	19. При переходе от амплитудной модуляции к однополосной модуляции дальность связи:
	1) увеличится
	2) уменьшится
	3) останется неизменной
	20. Каскад с анодной модуляцией должен работать в режиме:
	1) недонапряженном
	2) критическом
	3) перенапряженном
ждени	14.1.3. Темы контрольных работ "Устройства генерирования и формирования сигналов" 1. Режимом колебаний первого рода называется режим работы генератора с внешним возбу ем, при котором анодный ток протекает:
	а) на протяжении всего периода колебаний напряжения на сетке

б) в течение половины периода напряжения

3) амплитудный

- в) в течение четверти периода напряжения г) в течение двух периодов напряжения 2. Где находится рабочая точка в исходном состоянии на характеристике лампы в режиме класса «В»? а) В области насыщения. б) На изломе характеристики. в) На середине прямолинейного участка характеристики. г) В области запирания. 3. Напряжение какой формы создает первая гармоника на анодном контуре в режиме колебаний II рода? а) Импульсной. б) Гармонической. в) Пилообразной. г) Треугольной. д) Трапецеидальной. 4. Транзистор при ключевом режиме работы генератора с внешним возбуждением находится в состоянии... а) отсечки б) насыщения в) отсечки или насыщения
 - г) активном
 - 5. Достоинствами простой выходной схемы (каскада) радиопередатчика являются:
 - а) высокий коэффициент полезного действия
 - б) хорошая фильтрация высших гармоник
 - в) надежность работы при обрывах антенны
 - г) защита от внешних магнитных полей
- 6.В исходном состоянии рабочая точка на характеристике лампы в режиме колебаний генератора I рода находится:
 - а) на изломе характеристики лампы

- б)в области насыщения
- в) на середине прямолинейной части характеристики
- г) в области отсечки
- 7. Какой гармонике анодного тока лампы анодный контур оказывает наибольшее сопротивление?
 - а)Первой.
 - б) Постоянной составляющей тока.
 - в) Всем четным гармоникам.
 - г) Всем нечетным гармоникам.
- 8. Что происходит с эмиттерным и коллекторным переходами транзистора в активном состоянии?
 - а) Эмиттерный и коллекторный переходы закрыты.
 - б) Эмиттерный переход открыт, а коллекторный переход закрыт.
 - в) Эмиттерный и коллекторный переходы открыты.
 - г) Эмиттерный переход закрыт, а коллекторный переход приоткрыт.
 - 9. Анодный ток в режиме колебаний второго рода имеет форму:
 - а) синусоидальную
 - б) периодической последовательности импульсов
 - в) постоянного тока
 - г) импульсов формы «Меандр»
 - 10. Укажите достоинства сложной схемы выходного каскада радиопередатчика:
 - а) высокий к.п.д.
 - б) хорошая фильтрация высших гармоник и надежность работы при обрывах антенны
 - в) простота настройки
 - г) простота конструкции
 - 11. Преимущество режима колебаний первого рода заключается:
 - а) в отсутствии постоянной составляющей тока анода
 - б) в высоком коэффициенте полезного действия

- в)в синусоидальной форме анодного тока
- г) в отсутствии переменной составляющей тока анода
- 12.Где находится в исходном состоянии рабочая точка на характеристике лампы в режиме класса «AB»?
 - а) Левее точки излома.
 - б) На изломе характеристики.
 - в) В области насыщения.
 - г) В области запирания.
- 13. Что происходит с четными гармониками в анодном контуре двухтактной схемы генератора с внешним возбуждением?
 - а) Удваиваются по амплитуде.
 - б) Компенсируются.
 - в) Направлены в анодном направлении и совпадают на фазе.
 - г) Утраиваются по амплитуде.
- 14. Какое преимущество транзисторного генератора с внешним возбуждением по схеме с общей базой обусловливает ее применение на высоких частотах?
 - а) Малое значение входного сопротивления.
 - б) Большое значение входного сопротивления.
 - в) Большой коэффициент усиления по току.
 - г) Малый коэффициент усиления по току.
 - 15.В чем заключается недостаток сложной схемы выходного каскада радиопередатчика?
 - а) Ненадежность работы при обрывах антенны.
 - б) Низкий к.п.д.
 - в) Низкая фильтрация гармоник.
 - г) Малая выходная мощность.
- 16. Режим работы генератора с внешним возбуждением называется режимом колебаний второго рода...
 - а) когда анодный ток протекает на части периода напряжения возбуждения
 - б) в отсутствие напряжения возбуждения

- в) в удвоенном напряжении возбуждения
- 17.В исходном состоянии рабочая точка на характеристике лампы в режиме класса«С» находится:
 - а) между серединой прямолинейного участка и точкой излома
 - б) на изломе характеристики
 - в) в области насыщения
 - г) в области отсечки
- 18. Что происходит с эмиттерным и коллекторным переходами транзистора в состоянии отсечки?
 - а) Эмиттерный переход открыт, а коллекторный переход закрыт.
 - б) Эмиттерный и коллекторный переходы закрыты.
 - в) Эмиттерный переход закрыт, а коллекторный переход открыт.
 - г) Эмиттерный и коллекторный переходы открыты.
- 19. Какие гармоники в выходном импульсном напряжении ключевого генератора являются максимальными?
 - а) Все четные.
 - б) Все нечетные.
 - в) Первая.
 - г) Вторая.
 - 20. Сложную схему выходного каскада используют в радиопередатчиках...
 - а) большой и средней мощности
 - б) маломощных
 - в) любой мощности
 - г) УКВ-диапазона

14.1.4. Темы лабораторных работ

ИССЛЕДОВАНИЕ НАГРУЗОЧНЫХ И РЕЗОНАНСНЫХ ХАРАКТЕРИСТИК ТРАНЗИ-СТОРНОГО КАСКАДА

ИССЛЕДОВАНИЕ АВТОГЕНЕРАТОРА С КВАРЦЕВЫМ РЕЗОНАТОРОМ

14.1.5. Темы курсовых проектов / курсовых работ

- 1. Расчёт и конструирование радиовещательного передатчика.
- 2. Расчёт и конструирование телевизионного передатчика сигналов изображения.

- 3. Расчёт и конструирование усилителя мощности сигналов COFDM
- 4. Расчёт и конструирование телевизионного передатчика сигналов звукового сопровождения.
 - 5. Расчёт и конструирование передатчика для цифрового радиовещания
 - 6. Расчёт и конструирование передатчика для УКВ ЧМ-стереовещания.
 - 7. Расчёт и конструирование передатчика для цифрового телевизионного вещания.

14.1.6. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала необходимо осуществлять медленно, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются термины, следует выяснить их значение для понимания дальнейшего материала;
 - необходимо осмысливать прочитанное и изученное, отвечать на предложенные вопросы.

Студенты могут получать индивидуальные консультации с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия в форме вебинаров. Расписание вебинаров публикуется в кабинете студента на сайте Университета. Запись вебинара публикуется в электронном курсе по дисциплине.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к	Преимущественно дистанционными методами

аппарата	зачету	
С ограничениями по общемедицинским	Тесты, письменные самостоятельные работы, вопросы к зачету,	Преимущественно проверка методами исходя из состояния
показаниям	контрольные работы, устные ответы	обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.