МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

УТВЕРЖДАЮ									
Проректор по учебной работе									
		П.Е. Троян							
«21»	10	2016 г.							

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ РАДИОАВТОМАТИКА

Направление подготовки (специальность): бакалавра 11.03.02 "Инфокоммуникацион-

ные технологии и системы связи"

Направленность (Профиль): "Системы радиосвязи и радиодоступа"

Квалификация: Академический бакалавр

Форма обучения: очная

Факультет: РТФ (радиотехнический)

Кафедра: ТОР – телекоммуникаций и основ радиотехники **Курс:** 2 **Семестр:** 4

Учебный план набора 2013, 2014, 2015 г.

Распределение рабочего времени:

№	Виды учебной работы	Семестр 5	Всего	Единицы
1.	Лекции	24	24	часов
2.	Лабораторные работы	18	18	часов
3.	Практические занятия	18	18	часов
4.	Всего аудиторных занятий	60	60	часов
5.	Из них в интерактивной форме	12	12	часов
6.	Самостоятельная работа студентов	48	48	часов
7.	Всего (без зачёта)	108	108	часов
8.	Общая трудоемкость	108	108	часов
	(в зачетных единицах)	3	3	ЗЕТ

Зачет <u>4</u> семестр Экзамен не предусмотрен Диф. зачет не предусмотрен

Томск 2016

Рассмотрена и	одобрена на	заседании	кафедры	П
протокол №	OT «	>>	20	Γ.

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего профессионального образования (ФГОС ВО) третьего поколения по направлению подготовки бакалавра 11.03.02 "Инфокоммуникационные технологии и системы связи", Квалификация: Академический бакалавр, утвержденного 06. 12. 2015 г., регистрационный номер 174.

Рабочая программа рассмотрена и утвержд протокол №	дена на заседании кафедр	ры «» 20 г.,
Разработчик доцент каф. РТС	(подпись)	В.Ю.Куприп
Зав. кафедрой РТС, д.т.н., проф.	(подпись)	С.В. Мелихов
Рабочая программа согласована с факу кафедрами направления подготовки (специа		й и выпускающей
Декан радиотехнического факультета	(подпись)	К.Ю. Попова
Зав. профилирующей кафедрой телекоммуникаций и основ радио	техники (ТОР)	А.Я. Демидов
Эксперты:		
Профессор каф. РТС, д.т.н.	(подпись)	Ю.П. Акулиничев
Доцент каф. ТОР, к.т.н.	(подпись)	С.И. Богомолов

1. Цели и задачи дисциплины

Дисциплина «Радиоавтоматика» (РА) относится к числу дисциплин профессионального цикла (вариативная часть) для подготовки специалистов по направлению 210601.65 — Радиоэлектронные системы и комплексы. Целью преподавания дисциплины является изучение основных качественных показателей устройств РА: устойчивость, точность, качество в переходном режиме, помехоустойчивость.

Основной задачей дисциплины является формирование у студентов *компетенций*, позволяющих самостоятельно проводить математический анализ физических процессов в аналоговых и цифровых устройствах радиоавтоматики, оценивать реальные и предельные возможности систем радиоавтоматики, например, устойчивости и других.

В курсе «Радиоавтоматики» принят единый методологический подход к анализу и синтезу современных систем радиоавтоматики с использованием математического аппарата. Предусмотренные программой курса РА знания являются не только базой для последующего изучения специальных дисциплин, но имеют также самостоятельное значение для формирования специалистов по направлению 210601 — Радиоэлектронные системы и комплексы.

2. Место дисциплины в структуре ООП

Дисциплина РА относится к федеральному компоненту *цикла* (базовая часть) рабочего учебного плана.

Теоретической базой курса РА являются основные сведения из дисциплин естественнонаучного и профессионального циклов подготовки специалистов: «Математический анализ» (Б1.Б.10), «Физика» (Б1.Б.9), «Теория электрических цепей» (Б1.Б.17), «Статистическая теория инфокоммуникационных систем» (Б1.Б.14).

Минимальным требованием к «входным» знаниям, необходимым для успешного усвоения данной дисциплины, является удовлетворительное усвоение программ по указанных выше курсам.

Изучаемая дисциплина является предшествующей при изучении специальных и профилирующих дисциплин: «Радиоприемные устройства систем радиосвязи и радиодоступа» (Б1.В.ОД.6), «Радиопередающие устройства систем радиосвязи и радиодоступа» (Б1.В.ОД.7), «Радиопередающие устройства систем радиосвязи и радиодоступа» (Б1.В.ДВ.6), а также может быть использована в разделах ряда курсов, касающихся систем радиоавтоматики.

3. Требования к результатам освоения дисциплины

Изучение рассматриваемой дисциплины направлено на формирование у студентов следующих компетенций.

Профессиональные компетенции:

- умением собирать и анализировать информацию для формирования исходных данных для проектирования средств и сетей связи и их элементов (ПК 8).
- готовностью изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования (ПК 16).

В результате изучения дисциплины студент должен

знать:

- структуру, состав и назначение основных систем радиоавтоматики;
- принципы построения и классификации систем радиоавтоматики;
- методы создания математических моделей систем радиоавтоматики.
- методы определения качественных показателей систем радиоавтоматики: устойчивость, точность, качество в переходном режиме, помехоустойчивость;
- методы проектирования оптимальных систем радиоавтоматики;

уметь:

- проводить анализ линейных, нелинейных и дискретных систем радиоавтоматики при детерминированных и случайных воздействиях;
- исследовать системы радиоавтоматики на устойчивость;

владеть:

• методами использования способов практической оценки и обеспечения необходимых качественных показателей устройств РА: устойчивость, точность, качество в переходном режиме, помехоустойчивость.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетные единицы.

Вид учебной работы	Всего часов	Семестры
	Всего часов	5
Аудиторные занятия (всего)	60	60
В том числе:		
Лекции	24	24
Лабораторные работы	18	18
Практические занятия	18	18
Самостоятельная работа (всего)	48	48
Вид промежуточной аттестации - зачет		
Общая трудоемкость час	108	108
Зачетные Единицы Трудоемкости	3	3

5. Содержание дисциплины

5.1. Разделы дисциплин и виды занятий

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия.	Самост. ра- бота студен- та	Всего час. (без экзам)	Формируемые компетенции (ПК)
1	2	3	4	5	6	7	8
1	Основные понятия и определения	2			4	6	ПК-8, ПК-16
2	Конкретные системы радиоавтоматики	2			4	6	ПК-8, ПК-16
3	Математические методы описания линейных непрерывных систем радиоавтоматики	2		2	4	8	ПК-8, ПК-16
4	Основные элементы систем радиоавтоматики	2			4	6	ПК-8, ПК-16
5	Анализ устойчивости систем радиоавтоматики	2		2	4	8	ПК-8, ПК-16
6	Анализ линейных стационарных си- стем радиоавтоматики при детерми- нированных воздействиях	2	6	2	4	14	ПК-8, ПК-16
7	Анализ линейных стационарных си- стем радиоавтоматики при случайных воздействиях	2	6	2	4	14	ПК-8, ПК-16
8	Синтез фильтров следящих систем методами оптимальной линейной фильтрации	2	6	2	4	14	ПК-8, ПК-16
9	Синтез оптимальных систем радиоавтоматики методом пространства состояний	2		2	4	8	ПК-8, ПК-16
10	Анализ нелинейных систем радиоавтоматики	2		2	4	8	ПК-8, ПК-16
11	Дискретные системы радиоавтоматики	2		2	4	8	ПК-8, ПК-16
12	Цифровые системы радиоавтоматики	2		2	4	8	ПК-8, ПК-16
Итого		24	18	18	48	108	

5.2. Содержание разделов дисциплины (по лекциям)

№ п/п	Наименование разделов	Содержание разделов	Тру- до- ем- кость (час.)	Формируемый компетенции (ОК, ПК)
1	2	3	4	5
1	Основные понятия и определения	Понятие системы радиоавтоматики и принципы ее построения. Определение объекта управления, устройства управления, системы управления. Замкнутые и разомкнутые системы радиоавтоматики. Основные элементы структурной схемы радиоавтоматики. Возможные принципы классификации систем радиоавтоматики.	2	ПК-8, ПК-16
2	Конкретные системы радиоавтоматики	Системы автоматической подстройки частоты. Системы фазовой автоподстройки частоты. Системы автоматического сопровождения по дальности движущихся объектов. Системы автоматического сопровождения по направлению движущихся объектов. Системы автоматической регулировки усиления. Обобщенные функциональная и структурная схемы радиотехнической следящей системы.	2	ПК-8, ПК-16
3	Математические методы описания линейных непрерывных систем радиоавтоматики	Описание системы радиоавтоматики с помощью дифференциального уравнения. Передаточная функция. Импульсная характеристика. Определение отклика системы как интеграла свёртки входного воздействия и импульсной характеристики системы. Комплексный коэффициент передачи и логарифмические характеристики системы.	2	ПК-8, ПК-16
4	Основные элементы систем радиоавтоматики	Частотные дискриминаторы. Фазовые дискриминаторы. Угловые дискриминаторы. Временные дискриминаторы. Типовые звенья. Логарифмические частотные характеристики типовых звеньев.	2	ПК-8, ПК-16
5	Анализ устой- чивости систем радиоавтомати- ки	Постановка задачи устойчивости. Анализ устойчивости с помощью алгебраических критериев. Критерий Гурвица. Анализ устойчивости с помощью частотных критериев. Оценка устойчивости по логарифмической частотной характеристике. Абсолютно устойчивые и условно устойчивые системы.	2	ПК-8, ПК-16
6	Анализ линейных стационарных систем радиоавтоматики при детерминированных воздействиях	Методы анализа детерминированных процессов в линейных стационарных системах радиоавтоматики. Исследование переходного и установившегося режимов в системах радиоавтоматики. Показатели качества переходного процесса. Анализ точности работы систем. Ошибки типовых систем радиоавтоматики.	2	ПК-8, ПК-16
7	Анализ линейных стационарных систем радиоавтоматики при случайных воздействиях	Определение характеристик случайных процессов в установившемся режиме. Определение характеристик случайных процессов в переходном режиме. Память следящих систем. Примеры расчета дисперсии ошибки в радиотехнических следящих системах. Анализ линейных нестационарных систем радиоавтоматики.	2	ПК-8, ПК-16
8	Синтез фильтров следящих систем методами оптимальной линейной фильтрации	Постановка задачи оптимального синтеза. Оптимизация параметров радиотехнической следящей системы. Интегральные уравнения оптимальных фильтров. Решение интегрального уравнения без учета физической реализуемости. Синтез оптимальной физически реализуемой системы	2	ПК-8, ПК-16

1	2	3	4	5
9	Синтез опти- мальных систем радиоавтомати- ки методом пространства состояний	Особенности фильтров Калмана. Векторное описание случайного процесса.	2	ПК-8, ПК-16
10	Анализ нели- нейных систем радиоавтомати- ки	Нелинейные режимы радиотехнических следящих систем и методы их анализа. Анализ нелинейных систем на основе теории марковских случайных процессов. Анализ нелинейных следящих систем методом статистической линеаризации.	2	ПК-8, ПК-16
11	Дискретные системы радиоавтоматики	Математическое описание дискретных импульсных систем. Устойчивость дискретных следящих систем. Анализ детерминированных процессов в дискретных системах. Анализ случайных процессов в дискретных системах.	2	ПК-8, ПК-16
12	Цифровые си- стемы радиоав- томатики	Общая характеристика систем. Цифровые дискриминаторы. Цифровые фильтры. Цифровые генераторы опорного сигнала. Примеры построения цифровых следящих систем. Анализ цифровых следящих систем.	2	ПК-8, ПК-16

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

No	Наименование обеспе-		№ № разделов данной дисциплины из табл.5.1, для которых необходимо										
п/п	чивающих (предыду-	изучение обеспечивающих (предыдущих) и обеспечиваемых (последую-									цую-		
	щих) и обеспечиваемых		щих) дисциплин										
	(последующих) дисци-	1	2	3	4	5	6	7	8	9	10	11	12
	плин												
			Пред	цшест	вующ	ие дисі	циплин	ы					
1	Математический анализ	+ + + + + + +								+			
2	Физика	+ + + +											
3	Теория электрических цепей	+	+	+	+	+	+	+				+	+
4	Теория вероятностей и математическая статистика							+	+	+	+	+	+
			П	оследу	ющие	дисци	плины	Ī					
1	Радиоприемные устройства систем радиосвязи и радиодоступа		+	+	+	+						+	+
2	Радиопередающие устройства систем ра- диосвязи и радиодоступа	+	+	+	+	+						+	+
3	Статистическая теория инфокоммуникационных систем	+	+	+	+	+	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Juii/1 1 1111										
Перечень ком-	Формы контроля									
петенций		(примеры)								
	Л	Лаб	Пр.	CPC						
ПК-8	+	+	+	+	Контрольные работы.					
ПК-16	+	+	+	+	Контрольные работы.					

Л – лекция, Пр – практические и семинарские занятия, Лаб – лабораторные работы, СРС – самостоятельная работа студента.

6. Методы и формы организации обучения. Технологии интерактивного обучения при

разных формах занятий в часах

Формы Методы	Лекции (час)	Практиче- ские заня- тия (час)	Лаборат. работы (час)	СРС (час)	Всего
Лекции - консультации	2				2
Использование интерактивных методов на практических занятиях (тестирование, поисковые методы, метод конкретных ситуаций)		6			6
Работа в команде			10		10
Итого интерактивных занятий	2	6	10		18

7. Лабораторный практикум

No॒	№ раздела дис-	Наименование лабораторных работ	Трудо-	Компетенции ОК,
п/п	циплины из		емкость	ПК
	табл. 5.1		(час.)	
1	6	Исследование следящих систем при детерминиро-	6	ПК-8, ПК-16
		ванных воздействиях		
2	7	Исследование следящих систем при случайных	6	ПК-8, ПК-16
		воздействиях		
3	8	Оптимизация параметров следящей системы	6	ПК-8, ПК-16

8. Практические занятия

	akin ieckne sai			
№	№ раздела дис-		Трудо-	Компетенции ОК,
п/п	циплины из	Тематика практических занятий (семинаров)	емкость	ПК
	табл. 5.1		(час.)	
1	3	Математические методы описания линейных	2	ПК-8, ПК-16
		непрерывных систем радиоавтоматики		
2	5	Анализ устойчивости систем радиоавтоматики	2	ПК-8, ПК-16
3	6	Анализ линейных стационарных систем ра-	2	ПК-8, ПК-16
		диоавтоматики при детерминированных воз-		
		действиях		
4	7	Анализ линейных стационарных систем ра-	2	ПК-8, ПК-16
		диоавтоматики при случайных воздействиях		
5	8	Синтез фильтров следящих систем методами	2	ПК-8, ПК-16
		оптимальной линейной фильтрации		
6	9	Синтез оптимальных систем радиоавтоматики	2	ПК-8, ПК-16
		методом пространства состояний		
7	10	Анализ нелинейных систем радиоавтоматики	2	ПК-8, ПК-16
8	11	Дискретные системы радиоавтоматики	2	ПК-8, ПК-16
9	12	Цифровые системы радиоавтоматики	2	ПК-8, ПК-16

9. Самостоятельная работа

№ п/ п	№ раздела дисципли- ны из табл. 5.1	Тематика самостоятельной работы (детализация)	Трудо- емкость (час.)	Компетенции ОК, ПК	Контроль вы- полнения рабо- ты
1	1	Основные понятия и определения. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Опрос
2	2	Конкретные системы радиоавтоматики. Ра- бота над конспектом лекций. Самостоятель- ное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Опрос
3	3	Математические методы описания линейных непрерывных систем радиоавтоматики. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Контрольная работа.

4	4	Основные элементы систем радиоавтомати- ки. Работа над конспектом лекций. Самосто- ятельное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Опрос
6	6	Анализ устойчивости систем радиоавтоматики. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела. Подготовка к лабораторным работам, оформление отчетов, подготовка к их защите.	4	ПК-8, ПК-16	Выполнение домашнего индивидуального задания
7	7	Анализ линейных стационарных систем радиоавтоматики при детерминированных воздействиях. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела. Подготовка к лабораторным работам, оформление отчетов, подготовка к их защите.	4	ПК-8, ПК-16	Опрос
8	8	Анализ линейных стационарных систем радиоавтоматики при случайных воздействиях. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела. Подготовка к лабораторным работам, оформление отчетов, подготовка к их защите.	4	ПК-8, ПК-16	Опрос
9	9	Синтез фильтров следящих систем методами оптимальной линейной фильтрации. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Контрольная работа.
10	10	Синтез оптимальных систем радиоавтоматики методом пространства состояний. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Опрос
11	11	Дискретные системы радиоавтоматики. Ра- бота над конспектом лекций. Самостоятель- ное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Опрос
12	12	Цифровые системы радиоавтоматики. Работа над конспектом лекций. Самостоятельное углубленное изучение материала раздела.	4	ПК-8, ПК-16	Контрольная работа.

10. Курсовая работа

Курсовая работа учебным планом не предусмотрена.

11. Рейтинговая система для оценки успеваемости студентов

11.1 Балльные оценки для элементов контроля.

Элементы учебной деятель-	Максимальный	Максимальный	Максимальный	Всего за семестр
ности	балл на 1 КТ	балл на 2 КТ	балл за период	
			между 2КТ и на	
			конец семестра	
Домашние задания	5	5	5	15
Контрольная работа	10	15	15	40
Отчёт по лабораторным рабо-	0	10	10	20
там	U	10	10	20
Посещение занятий	6	3	6	15
Опрос на занятиях	4	2	4	10
Итого максимум за период	25	35	40	100
Нарастающим итогом	25	60	100	100

11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3

< 60 % от максимальной суммы баллов на дату КТ	2

11.3 Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ЕСТЅ)
5 (отлично) (зачтено)	90 – 100	А (отлично)
	85 – 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 – 84	С (хорошо)
	70 – 74	D (удардатраритан на)
3 (удовлетворительно)	65 – 69	D (удовлетворительно)
(зачтено)	60 – 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1 Основная литература

1. Радиоавтоматика: учеб. пособие / Г.Н. Якушевич. – Томск: ТУСУР Научно образовательный портал –2012. – 237 с. Режим доступа: http://edu.tusur.ru/training/publications/2103

12.2 Дополнительная литература

- 1. Радиоавтоматика: Учебник для вузов / Г. Ф. Коновалов. М. : Высшая школа, 1990. 334[2] с. : ил., табл. Экземпляры всего: 161.
- 2. Бернгардт А.С., Чумаков А.С. Радиоавтоматика: Учеб пособие. Томск, ТУСУР 2006.-188 с. (49 экз.)
- 3. Радиоавтоматика: Учебник для вузов / Сергей Владимирович Первачев. М.: Радио и связь, 1982. 294[2] с.: ил. Экземпляры всего: 117.
- 4. Радиоавтоматика: Учебное пособие для вузов / В. А. Бесекерский [и др.]; ред. В. А. Бесекерский. М.: Высшая школа, 1985. 270[2] с.: ил., табл. Экземпляры всего: 16.

12.3 Программное обеспечение

- 1. Операционная система Windows.
- 2. Matlab.
- 3. Информационно-справочные и поисковые системы.

13. Материально-техническое обеспечение дисциплины:

- 1. Учебно методический комплекс дисциплины:
- А.С. Чумаков. Радиоавтоматика: Учебно методическое пособие для проведения лабораторных работ. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.- 35с. Электрон, текстовые дан. Режим доступа: http://edu.tusur.ru/training/publications/1741
- А.С. Бернгардт, А.С. Чумаков. Радиоавтоматика: Учебно методическое пособие для проведения практических занятий и самостоятельной работы студентов. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.- 27с. Электрон, текстовые дан. Режим доступа: http://edu.tusur.ru/training/publications/1745
- Самостоятельная работа студента при изучении дисциплин математическоестественнонаучного, общепрофессионального (профессионального), специального циклов: Учебно-методическое пособие по самостоятельной работе / Кологривов В. А., Мелихов С. В. 2012. 9 с. http://edu.tusur.ru/training/publications/1845
- Тестовые вопросы для самоконтроля.
- Оборудование лаборатории защищенных систем связи ауд. 432 радиотехнического корпуса.
 - 2. Персональный компьютер с доступом в сеть Интернет.

14. Методические рекомендации по организации изучения дисциплины

Основная рекомендация сводится к обеспечению равномерной активной работы студентов над курсом в течение учебного семестра.

При изучении курса следует стараться понять то общее, что объединяет рассматриваемые вопросы. Например, для систем радиоавтоматики ключевыми являются понятия устойчивость, точность, качество в переходном режиме, помехоустойчивость.

Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РА-ДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ					
Прорект	Проректор по учебной работе				
		П. Е. Троян			
«21»	10	2016 г.			

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ *ПО УЧЕБНОЙ ДИСЦИПЛИНЕ* (*ПРАКТИКЕ И ЛАБОРАТОРНЫМ РАБОТАМ*)

РАДИОАВТОМАТИКА

Уровень основной образовательной программы: академический бакалавриат Направление(я) подготовки (специальность): 11.03.02 (инфокоммуникационные технологии и системы связи)

Направленность (профиль): Системы мобильной связи

Форма обучения: очная

Факультет: РТФ (радиотехнический)

Кафедра: ТОР (телекоммуникаций и основ радиотехники)

Курс: второй Семестр: четвертый

Учебный план набора 2013, 2014, 2015 г.

Зачет: <u>четвертый</u> семестр

Разработчик В.Ю.Куприц

Зав. обеспечивающей кафедрой РТС С.В. Мелихов

Томск -2016

1 Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
Код ПК-4 ПК-9		 Этапы формирования компетенции Должен знать: методы решения задач анализа и расчета характеристик радиотехнических цепей; основные закономерности, связывающие характеристик радиотехнических цепей. основные структурные и функциональные схемы радиоэлектронных систем и комплексов; смысл и постановку задач при разработке принципиальных схем радиоэлектронных устройств; основные методы выбора оптимальных проектных решений на всех этапах проектного процесса. Должен уметь: использовать теоретические знания для математического анализа систем радиоавтоматики; разрабатывать основные структурные и функциональные схемы радиоэлектронных систем и комплексов; выбирать оптимальные проектные решения на всех этапах проектного процесса. Должен владеть: навыками представления, описания и математического анализа систем радиоавтоматики;
		• навыками проектирования основных структурных и функциональных схем радиоэлектронных систем и комплексов;
		• способностью выбирать оптимальные проектные решения на всех этапах проектного процесса.

2 Реализация компетенций

2.1 Компетенция ПК-4

ПК-4: Способность владеть методами решения задач анализа и расчета характеристик радиотехнических цепей.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 2.

Таблица 2- Этапы формирования компетенции и используемые средства оценивания

1. Состав	Знать	Уметь	Владеть
Содержание этапов	Знает основные методы решения задач анализа и расчета характеристик радиотехнических цепей;	Умеет использовать теоретические знания для математического анализа характеристик радиотехнических цепей.	Владеет математическим аппаратом теории анализа характеристик радиотехнических цепей.
Виды занятий	 Лекции; Практические занятия Лабораторные работы Групповые консультации; 	Выполнение домашних заданий;Самостоятельная работа студентов	Практические занятияЛабораторные работы
Используемые средства оценива- ния	Тест;Выполнение домашних заданий;Экзамен	Оформление решения задач;Защита домашних заданий.	• Экзамен.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапа- зоном практических умений, требуемых для развития твор- ческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой	Обладает диапазо- ном практических умений, требуемых для решения опре-	Берет ответствен- ность за завершение задач в исследова- нии, приспосабли-

	области	деленных проблем в области исследова- ния	вает свое поведение к обстоятельствам в решении проблем
Удовлетворительно	Обладает базовыми	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при пря-
(пороговый уровень)	общими знаниями		мом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть	
Отлично (высокий уровень)	• Знает все методы анализа характеристик радиотехнических цепей; • Знает все способы решения задач по расчету характеристик радиотехнических цепей; • Знает влияние изменения различных параметров на характеристики радиотехнических цепей.	 Умеет свободно применять различные методы анализа характеристик радиотехнических цепей в незнакомых ситуациях; Умеет свободно решать задачи расчета характеристик радиотехнических цепей в незнакомых ситуациях; 	• Свободно владеет разными методами представления решения задач анализа и расчета характеристик радиотехнических цепей	
Хорошо (базовый уровень)	•Знает несколько методов анализа характеристик радиотехнических цепей; •Знает, как рассчитывать характеристики радиотехнических цепей;	• Умеет применять методы решения задач анализа характеристик радиотехнических цепей в типовых ситуациях.	•Владеет несколькими методами решения задач анализа и расчета характеристик радиотехнических цепей информации	
Удовлетворительно (пороговый уровень)	• Имеет представление о методах анализа характеристик радиотехнических цепей; • Знает методы расчета характеристики радиотехнических цепей;	• Умеет применять методы решения задач анализа характеристик радиотехнических цепей в некоторых типовых ситуациях.	•Владеет одним из методов решения задач анализа и расчета характеристик радиотехнических цепей.	

2.2. Компетенция ПК-9

ПК-9: Способность разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5- Этапы формирования компетенции и используемые средства оценивания

2. Состав	Знать	Уметь	Владеть
Содержание эта- пов	Знает основные структурные и функциональные схемы радиоэлектронных систем и комплексов.	Умеет использовать теоретические знания для проектирования основных структурных и функциональных схем радиоэлектронных систем и комплексов.	Владеет навыками проектирования ос- новных структур- ных и функцио- нальных схем ра- диоэлектронных систем и комплек- сов.
Виды занятий	 Лекции; Практические занятия Лабораторные работы Групповые консультации; 	 Выполнение домашних заданий; Самостоятельная работа студентов 	Практические занятияЛабораторные работы
Используемые средства оценива- ния	Тест;Выполнение до- машних заданий;Экзамен	Оформление решения задач;Защита домашних заданий.	• Экзамен.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 6.

Таблица 6 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапа- зоном практических умений, требуемых для развития твор- ческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый	Знает факты, прин-	Обладает диапазо-	Берет ответствен-

уровень)	ципы, процессы, общие понятия в пределах изучаемой области	ном практических умений, требуемых для решения определенных проблем в области исследования	ность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно	Обладает базовыми	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при пря-
(пороговый уровень)	общими знаниями		мом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 7.

Таблица 7 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	• Знает методы проектирования структурных и функциональных схем радиоэлектронных систем и комплексов; • Знает методы проектирования принципиальных схем радиоэлектронных устройств; • Знает взаимосвязи между структурными, функциональными схемами радиоэлектронных систем и принципиальными схемами радиоэлектронных устройств.	• Умеет разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов; • Умеет разрабатывать принципиальные схемы радиоэлектронных устройств в незнакомых ситуациях;	• Свободно владеет методами проектирования структурные и функциональные схемы радиоэлектронных систем и комплексов; • Свободно владеет методами проектирования принципиальных схем радиоэлектронных устройств.
Хорошо (базовый уровень)	 •Знает, как разрабатываются структурные и функциональные схемы радиоэлектронных систем и комплексов; •Знает, как разрабатываются принципиальные схемы радиоэлектронных устройств; 	 Умеет разрабатывать типовые структурные и функциональные схемы радио-электронных систем и комплексов; Умеет разрабатывать типовые принципиальные схемы радио- 	• Владеет методами проектирования типовых структурные и функциональные схемы радиоэлектронных систем и комплексов; • Владеет методами проектирования типовых принципиальных схем

		электрон-ных устройств.	радиоэлектрон- ных устройств.
Удовлетворительно (пороговый уровень)	 Имеет представление о том, как разрабатываются структурные и функциональные схемы радиоэлектронных систем и комплексов; Имеет представление о том, как разрабатываются принципиальные схемы радиоэлектронных устройств; 	• Умеет разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов; в некоторых типовых ситуациях. • Умеет разрабатывать принципиальные схемы радиоэлектронных устройств в некоторых типовых ситуациях.	• Владеет методами проектирования некоторых типовых структурные и функциональные схемы радиоэлектронных систем и комплексов; • Владеет методами проектирования некоторых типовых принципиальных схем радиоэлектронных устройств.

2.3 Компетенция ПК-11

ПК-11: Способность выбирать оптимальные проектные решения на всех этапах проектного процесса

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 8.

Таблица 8 – Этапы формирования компетенции и используемые средства оценивания

3. Состав	Знать	Уметь	Владеть
Содержание этапов	Знает основные методы выбора оптимальных проектных решений на всех этапах проектного процесса.	Умеет использовать теоретические знания при выборе оптимальных проектных решений на всех этапах проектного процесса.	Владеет методами выбора оптимальных проектных решений на всех этапах проектного процесса.
Виды занятий	 Лекции; Практические занятия Лабораторные работы Групповые консультации; 	•Выполнение домашних заданий; •Самостоятельная работа студентов	Практические занятияЛабораторные работы
Используемые сред- ства оценивания	•Тест; •Выполнение до-	•Оформление решения задач;	•Экзамен.

машних заданий; •Экзамен	•Защита домашних заданий.	
-----------------------------	------------------------------	--

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 9.

Таблица 9 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапа- зоном практических умений, требуемых для развития твор- ческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при пря- мом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 10.

Таблица 10 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	•Знает методы выбора оптимальных проектных решений на всех этапах проектного процесса; •Знает взаимосвязи между оптимальными проектными решениями на различных этапах проектного процесса.	• Умеет свободно выбирать оптимальные проектные решения на всех этапах проектного процесса в незнакомых ситуациях;	• Свободно владеет выбором оптимальных проектных решений на всех этапах проектного процесса в незнакомых ситуациях;
Хорошо (базовый	•Знает методы выбо-	•Умеет выбирать	•Владеет выбором

уровень)	ра оптимальных проектных решений на некоторых этапах проектного процесса;	оптимальные про- ектные решения на всех этапах проектного про- цесса;	оптимальных про- ектных решений на всех этапах проектного про- цесса;
Удовлетворительно (пороговый уровень)	•Имеет представление о методах выбора оптимальных проектных решений на некоторых этапах проектного процесса;	• Умеет выбирать оптимальные про- ектные решения на некоторых этапах проектного процесса;	•Владеет выбором оптимальных про-ектных решений на некоторых этапах проектного процесса;

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания и иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

- Тесты, используемые на практических занятиях для контроля самостоятельной работы и усвоения лекционного материала (прилагаются).
- Контрольные вопросы по разделам курса "Радиоавтоматика".
- Список задач для практических занятий и домашних заданий
- Темы для самостоятельной работы:
 - усвоение лекционного материала по учебным пособиям с самопроверкой по контрольным вопросам (контрольные вопросы содержатся в приложении п. 2.
- Темы лабораторных работ (прилагаются).
- Экзаменационные вопросы (прилагаются).

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе:

- 4.1 А.С. Чумаков. Радиоавтоматика: Учебно методическое пособие для проведения лабораторных работ. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.- 35с. Электрон, текстовые дан. Режим доступа: http://edu.tusur.ru/training/publications/1741
- 4.2 А.С. Бернгардт, А.С. Чумаков. Радиоавтоматика: Учебно методическое пособие для проведения практических занятий и самостоятельной работы студентов. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.- 27с. Электрон, текстовые дан. Режим доступа: http://edu.tusur.ru/training/publications/1745
- 4.3 Самостоятельная работа студента при изучении дисциплин математическоестественнонаучного, общепрофессионального (профессионального), специального циклов: Учебно-методическое пособие по самостоятельной работе / Кологривов В. А., Мелихов С. В. 2012. 9 с. http://edu.tusur.ru/training/publications/1845

- П.1. Тесты для контроля самостоятельной работы и усвоения лекционного материала
- П.2. Контрольные вопросы по разделам курса "Радиоавтоматика"
- П.3. Список задач для практических занятий и домашних заданий
- П.4 Темы лабораторных работ
- П.5. Экзаменационные вопросы

Приложение П.1. Тест 1

Гичина		Фолития отплото
Группа		Фамилия студента
Вопрос:	Ответ	такую совокупность элементов, входящих в систему регули-
Типовым линей-	1	рования, переходные процессы в которых описываются ли-
ным звеном		нейным дифференциальным уравнением с постоянными ко-
называют:		эффициентами;
	Ответ	такую совокупность элементов, входящих в систему регули-
	2	рования, переходные процессы в которых описываются ли-
		нейным алгебраическим уравнением не выше второго по-
		рядка;
	Ответ	такую совокупность элементов, входящих в систему регули-
	3	рования, переходные процессы в которых описываются по-
		линомом не выше второго порядка;
	Ответ	такую совокупность элементов, входящих в систему регули-
	4	рования, переходные процессы в которых описываются ли-
		нейным дифференциальным уравнением с переменными ко-
		эффициентами;
	Ответ	такую совокупность элементов, входящих в систему регули-
	5	рования, переходные процессы в которых описываются ли-
		нейным алгебраическим уравнением не выше третьего по-
		рядка;
Вопрос:	Ответ	у которого выходная величина в каждый момент времени
Безынерционным	1	пропорциональна входной величине;
усилительным	Ответ	у которого выходная величина в любой момент времени
звеном системы	2	равна входной величине;
называют звено:	Ответ	у которого выходная величина в каждый момент времени
	3	пропорциональна интегралу от входной величины;
	Ответ	у которого выходная величина в каждый момент времени в
	4	целое число раз больше входной величины;
	Ответ	у которого выходная величина в каждый момент времени
	5	пропорциональна входной величине с противоположным
		знаком;

Вопрос: Апериодическим называется звено:	Ответ 1	в котором при подаче на вход сигнала в виде единичной функции выходная величина изменяется по экспоненциальному закону, асимптотически стремясь к новому установившемуся значению;
	Ответ 2	в котором при подаче на вход сигнала в виде единичной функции выходная величина изменяется пропорционально интегралу во времени от входной величины;
	Ответ 3	в котором при подаче на вход сигнала в виде единичной функции выходная величина пропорциональна производной по времени от входной величины;
	Ответ 4	в котором при подаче на вход сигнала в виде единичной функции выходная величина изменяется пропорционально входной величине;
Вопрос: Апериодическим называется звено:	Ответ 1	в котором при подаче на вход сигнала в виде единичной функции выходная величина изменяется по экспоненциальному закону, асимптотически стремясь к новому установившемуся значению;
	Ответ 2	в котором при подаче на вход сигнала в виде единичной функции выходная величина изменяется пропорционально интегралу во времени от входной величины;
	Ответ 3	в котором при подаче на вход сигнала в виде единичной функции выходная величина пропорциональна производной по времени от входной величины;
	Ответ 4	в котором при подаче на вход сигнала в виде единичной функции выходная величина изменяется пропорционально входной величине;
Вопрос: Интегрирующим	Ответ 1	в котором выходная величина пропорциональна интегралу во времени от входной величины;
называется звено:	Ответ 2 Ответ	в котором скорость изменения выходной величины пропорциональна входной величине; в котором выходная величина при подаче на вход единично-
	3 Ответ	го скачка линейно зависит от времени; в котором при подаче на вход гармонического сигнала фаза
	4	выходного сигнала сдвигается на 90 градусов;
Вопрос:	Ответ	в котором выходная величина пропорциональна производ-
Дифференциру- ющим называют	1 Ответ	ной во времени от входной величины; в котором выходная величина пропорциональна скорости
звено:	2	изменения входной величины;
	Ответ	в котором выходная величина является линейной функцией
	3	времени;
	Ответ 4	в котором выходная величина пропорциональна входной величине;

Приложение П.1. Тест 2 Фамилия стулента

Группа		_ Фамилия студента
Вопрос:	Ответ	отношение изображения функции сигнала на выходе звена к
Передаточной	1	изображению функции возмущающего воздействия на входе

функцией звена		при нулевых начальных условиях;
называется:	Ответ	отношение амплитуды выходного сигнала звена к амплиту-
	2	де входного сигнала звена;
	Ответ	отношение модуля комплексной амплитуды выходного сиг-
	3	нала звена к модулю комплексной амплитуды входного сиг-
		нала звена;
	Ответ 4	зависимость от частоты отношения амплитуды колебаний на выходе звена к амплитуде колебаний на его входе;
Вопрос:	Ответ	частотная характеристика модуля коэффициента передачи
Логарифмической амплитудно-	1	звена, построенная с использованием логарифмического масштаба по осям;
частотной харак-	Ответ	частотная характеристика модуля коэффициента передачи
теристикой назы-	2	звена, построенная с применением логарифмического мас-
вается:		штаба по осям при использовании логарифма по
		основанию 10;
	Ответ	функция $L(\omega) = 20 \lg A(\omega)$, при построении графика которой
	3	используется логарифмическая шкала частот, причем $A(\omega)$ –
		модуль передаточной функции звена;
Вопрос:	Ответ	выходная величина предыдущего звена является входной
Последователь-	1	величиной после-
ное соединение		дующего звена;
звеньев – это та-	Ответ	результирующая передаточная функция равна произведе-
кое соединение,	2	нию передаточных функций отдельных звеньев;
при котором:	Ответ	результирующая передаточная функция равна сумме пере-
	3	даточных функций отдельных звеньев;
Вопрос:	Ответ	входная величина поступает на входы всех звеньев, а вы-
Параллельное со-	1	ходная величина является суммой выходных величин от-
единение звеньев		дельных звеньев;
– это такое со-	Ответ	результирующая передаточная функция равна произведе-
единение, при ко-	2	нию передаточных функций отдельных звеньев;
тором:	Ответ	результирующая передаточная функция "сложного" звена
тором.	3	равна сумме передаточных функций отдельных звеньев;
Вопрос: Для структурной	Ответ 1	$W_3(p) = \frac{W_p(p)}{1 + W_p(p)};$
схемы замкнутой		1 ''' p \P'
системы РА, при-	Ответ	$W_p(p)$
веденной на рисунке, найти передаточную функцию:	2	$W_{3}(p) = \frac{W_{p}(p)}{1 - W_{p}(p)};$
	Ответ	W (-) 1 .
	3	$W_3 (p) = \frac{1}{1 - W_p(p)};$
$g(t)$ $W_p(p)$	0	- 1
	Ответ 4	$W_3(p) = \frac{1}{1 + W_p(p)};$

Ответ 5	$W_{3}(p) = \frac{1 - W_{p}(p)}{1 + W_{p}(p)};$

Приложение П.1. Тест 3

Группа		Фамилия студента
Вопрос:	Ответ	способность системы автоматического регулирования пере-
Устойчивостью	1	ходить из одного установившегося состояния в другое при
системы автома-		изменении задающего воздействия без колебательного про-
тического регу-		цесса на выходе;
лирования назы-	Ответ	отсутствие колебательного процесса на выходе системы при
вают:	2	подаче или снятии со входа возмущающего воздействия;
	Ответ	способность системы возвращаться к заданному установив-
	3	шемуся состоянию после приложения или снятия внешнего
		возмущающего воздействия за время, отведенное для
		наблюдения;
	Ответ	способность системы оставаться в состоянии покоя после
	4	приложения или снятия внешнего возмущающего воздей-
		ствия;
	Ответ	способность системы переходить из одного состояние в дру-
	5	гое при приложении или снятии возмущающего воздействия
		за заданное время;
Вопрос:	Ответ	логарифмических частотных критериев;
Критерий устой-	1	
чивости Гурвица	Ответ	логарифмических критериев;
относится к чис-	2	
лу:	Ответ	алгебраических критериев;
	3	
	Ответ	амплитудно-фазовых критериев;
	4	
Вопрос:	Ответ	по виду амплитудно-фазовой характеристики замкнутой си-
Критерий устой-	1	стемы;
чивости Найкви-	Ответ	по знаку вещественной части корней характеристического
ста позволяет су-	2	уравнения замкнутой системы;
дить об устойчи-	Ответ	непосредственно по коэффициентам характеристического
вости	3	уравнения без вычисления корней;

	0	1
замкнутой авто-	Ответ 4	по виду амплитудно-фазовой характеристики замкнутой си-
	4	стемы, если она описывается полиномом не выше второго
стемы:	Ответ	порядка;
	5	по виду амплитудно-фазовой характеристики разомкнутого
	5	контура этой системы;
Рочном	Ответ	абсолютное значение отклонения управляемой величины в
Вопрос: Перерегулирова-	1	переходном процессе от установившегося значения после
нием называют:	1	
нисм называют.	Ответ	окончания переходного процесса; значение максимального отклонения управляемой величины
	2	в переходном процессе, отнесенное к установившемуся зна-
		чению управляемой величины после окончания переходного
		процесса, выраженное в процентах;
	Ответ	значение максимального выброса управляемой величины в
	3	переходном процессе отнесенное к установившемуся значе-
		нию управляемой величины после окончания переходного
		процесса, выраженное в процентах;
		процесси, выраженное в процентих,
	Ответ	модуль максимального отклонения управляемой величины в
	4	переходном процессе от установившегося значения после
	_	окончания переходного процесса;
	Ответ	отношение минимальной амплитуды выброса на переходной
	5	характеристике, отнесенное к максимальной амплитуде вы-
		броса, выраженное в процентах;
Вопрос:	Ответ	время, протекающее от момента приложения на вход систе-
Длительность пе-	1	мы единичного
реходного про-		скачка до момента, после которого имеет место неравен-
цесса to опреде-		ство:
ляют как:		$ y(t)-y(\infty) \le \delta npu t \ge t_o$
		где δ - заданная малая постоянная величина, представляю-
		щая собой допустимую ошибку; $y(t)$ – текущее значение ре-
		гулируемой величины; $y(\infty)$ — значение регули-
		руемой величины в установившемся режиме;
	Ответ	время, протекающее от момента приложения на вход систе-
	2	мы единичного скачка до момента окончания переходного
		процесса;
	Ответ	время, протекающее от момента приложения на вход систе-
	3	мы единичного скачка до момента первого максимума коле-
		бания управляемой величины;
	Ответ	время, протекающее от момента приложения на вход систе-
	4	мы единичного скачка до момента изменения управляемой
		величины в e (основание натурального ло-
		гарифма) раз;
		-

1. Основные понятия и определения

- 1.1. В чем заключается задача управления в системах радиоавтоматики?
- 1.2. В каком соотношении должны находиться задающее воздействие и управляемая величина в процессе управления?
- 1.3. Что называется ошибкой системы управления?
- 1.4. Какую задачу решает дискриминатор автоматической системы?
- 1.5. Какие преимущества имеют замкнутые автоматические системы по сравнению с разомкнутыми?
- 1.6. Как классифицируются системы радиоавтоматики по виду задающего воздействия?
- 1.7. Как классифицируются системы радиоавтоматики по виду параметра, выступающего в качестве задающего воздействия?
- 1.8. Как классифицируются системы РА по характеру уравнений, описывающих процессы в системе?

2. Конкретные системы радиоавтоматики

- 2.1. Какую задачу решает частотная автоподстройка в супергетеродинном приемнике?
- 2.2. Что является задающим воздействием, управляемой величиной и объектом управления в системах АПЧ?
- 2.3. Зависимость между какими величинами характеризует дискриминационная характеристика частотного дискриминатора?
- 2.4. Что является исполнительным устройством в системах АПЧ?
- 2.5. В чем отличие функциональной и структурной схем системы автоматического управления?
- 2.6. Зависимость между какими величинами устанавливает характеристика фазового дискриминатора?
- 2.7. Укажите отличительные особенности системы фазовой автоподстройки от системы АПЧ.
- 2.8. Перечислите устройства, входящие в состав системы автоматического сопровождения по направлению (АСН).
- 2.9. Какую роль играет пеленгационное устройство в системе АСН?
- 2.10. Какое направление внутри диаграммы направленности антенны называется равносигнальным?
- 2.11. Охарактеризуйте амплитудный и фазовый способы пеленгации.
- 2.12. Опишите функциональную схему суммарно-разностного метода моноимпульсной пеленгации.
- 2.13. Как формируется суммарная и разностная диаграммы направленности антенны?
- 2.14. Что является задающим воздействием, управляемой величиной и объектом управления в системе сопровождения по направлению?
- 2.15. Опишите функциональную схему системы слежения за временным положением импульсного сигнала.
- 2.16. Что является задающим воздействием, управляемой величиной и объектом управления в системе слежения за временным положением импульсного сигнала?
- 2.17. Опишите работу временного дискриминатора.
- 2.18. Приведите функциональную схему системы автоматической регулировки усиления и поясните принцип ее работы.
- 2.19. Опишите функциональную схему обобщенной радиотехнической следящей системы и принцип ее функционирования.
- 2.20. Опишите обобщенную структурную схему системы радиоавтоматики.

4

- 2.21. Из каких устройств состоит эквивалент дискриминатора?
- 2.22. Запишите стохастическое дифференциальное уравнение, связывающее задающее

воздействие, управляемую величину и флуктационное напряжение на выходе дискриминатора.

- 3. Математические методы описания линейных непрерывных систем Радиоавтоматики
- 3.1. Укажите условия, которым должна удовлетворять линейная система.
- 3.2. Запишите в краткой форме дифференциальное уравнение, связывающее задающее воздействие и управляемую величину.
- 3.3. Как по заданному дифференциальному уравнению найти передаточную функцию системы?
- 3.4. Как по заданной передаточной функции восстановить дифференциальное уравнение системы?
- 3.5. Запишите выражение передаточной функции замкнутой системы.
- 3.6. Как записать передаточную функцию, связывающую процессы в замкнутой системе, минуя промежуточные преобразования.
- 3.6. Как найти импульсную характеристику системы по заданным дифференциальному уравнению и передаточной функции?
- 3.7. Найдите комплексный коэффициент передачи по заданному дифференциальному уравнению.
- 3.8. Определите амплитудно-частотную и фазо-частотную характеристики по заданному комплексному коэффициенту передачи.
- 3.9 Как изображается комплексный коэффициент передачи на комплексной плоскости?
- 3.10 Что называется амплитудно-фазовой характеристикой системы?
- 3.11. Как определяются логарифмические амплитудно-частотная и фазо-частотная характеристики.
- 4. Основные элементы систем радиоавтоматики
- 4.1. Какие звенья систем радиоавтоматики называются типовыми?
- 4.2. Запишите дифференциальное уравнение, передаточную функцию, комплексный коэффициент передачи и частотные характеристики апериодического звена первого порядка.
- 4.2 Какое звено называется безынерционным и запишите его характеристики.
- 4.3.Запишите дифференциальное уравнение, передаточную функцию, комплексный коэффициент передачи и частотные характеристики идеального интегрирующего звена.
- 4.4. Запишите передаточную функцию, АЧХ и ФЧХ форсирующего звена Приведите возможный вариант реализации форсирующего звена.
- 4.5. Запишите передаточную функцию и частотные характеристики звена временного запаздывания.
- 4.6. Опишите построение асимптотических логарифмических характеристик на примере апериодического звена первого порядка.
- 5. Анализ устойчивости систем радиоавтоматики
- 5.1. Сформулируйте условие устойчивости системы.
- 5.2 Как по заданной передаточной функции замкнутой системы определить устойчива система или неустойчива?
- 5.2. Сформулируйте необходимое и достаточное условия устойчивости системы по алгебраическому критерию. Критерий устойчивости Гурвица.
- 5.3. Каким образом по критерию Гурвица вычисляется критический коэффициент усиления.
- 5.4. Сформулируйте частотный критерий устойчивости (критерий Найквиста).
- 5.5. Что такое частота среза и критическая частота? Каким образом определяются эти

частоты по амплитудно-фазовой характеристике разомкнутой системы?

- 5.6. Что такое запасы устойчивости? Каким образом они определяются по графику комплексного коэффициента разомкнутой системы?
- 6. Анализ линейных стационарных систем радиоавтоматики при детерминированных воздействиях
- 6.1. Опишите порядок решения задачи анализа, если задано дифференциальное уравнение, связывающее интересующие нас процессы. Рассмотрите случаи нулевых и ненулевых начальных условий.
- 6.2. Решите задачу из предыдущего пункта, если известна структурная схема системы.
- 6.3. Чем определяется характер переходного процесса? При каких условиях переходной процесс будет апериодическим, а при каких колебательным?
- 6.4. Перечислите показатели качества переходного процесса в системе.
- 6.5. Как связаны, запас устойчивости и величина перерегулирования?
- 6.6. Как найти значение ошибки системы в установившемся режиме, если известно, что она постоянна во времени?
- 6.7. Как найти значение ошибки системы в установившемся режиме, если известно, что она изменяется во времени?
- 6.8. Как определить коэффициенты ошибок по заданной передаточной функции?
- 6.9 Пусть воздействие на систему описывается полиномом степени относительно времени. При каком порядке астатизма системы ошибка слежения в установившемся режиме будет постоянной и при каком равна нулю.
- 6.10. Как определить порядок астатизма системы по коэффициентам ошибок и по количеству интеграторов в контуре управления?
- 6.11. Чему равно установившееся значение ошибки слежения для статической системы, систем с астатизмом первого и второго порядка при задающем воздействии, описанном полиномом второй степени относительно времени?
- 7. Анализ линейных систем радиоавтоматики при случайных воздействиях
- 7.1. Как определить ковариационную функцию отклика линейной системы в установившемся режиме на воздействие с известной ковариационной функцией?
- 7.2. Как связаны спектры мощности процессов на входе и выходе линейной системы?
- 7.3. Как определить ковариационную функцию отклика линейной системы в переходном режиме на воздействие с известной ковариационной функцией?
- 7.4. Как определить дисперсию отклика системы в переходном режиме, если на входе действует белый шум?
- 7.5. Как определить ковариационную функцию составляющей отклика системы, обусловленной случайными ненулевыми начальными условиями?
- 7.6. Охарактеризуйте метод замороженных коэффициентов при анализе линейных нестационарных систем.
- 7.7. Укажите, чем отличаются импульсная характеристика и передаточная функция нестационарной системы по сравнению со стационарной.
- 8. Синтез фильтров следящих систем методами оптимальной линейной фильтрации и методом пространства состояний.
- 8.1. Как оптимизировать параметры следящей системы по критерию минимума среднего квадрата ошибки, если задающее воздействие описывается детерминированной функцией, а возмущение случайной функцией?
- 8.2. Как оптимизировать параметры следящей системы, если задающее воздействие и возмущение представляют случайные процессы?
- 8.3. Сформулируйте постановку задачи синтеза оптимального фильтра следящей си стемы. Какой исходной информацией надо располагать для решения этой задачи?

- 8.4. Опишите порядок решения задачи синтеза оптимального фильтра следящей системы.
- 8.5. От каких характеристик задающего воздействия и действующей помехи зависит импульсная характеристика оптимального фильтра?
- 8.6. Перечислите характерные черты, которые отличают оптимальную фильтрацию по Калману от фильтрации по Винеру.
- 8.7. С какой целью вводится векторное описание случайного процесса?
- 8.8. Приведите функциональную схему моделирования случайного процесса в пространстве состояний.
- 8.9. Запишите уравнение состояния и выходное уравнение в векторно матричном обозначении и поясните смысл матриц, входящих в выражение.
- 8.10. Как определить переходную матрицу состояния процесса через матрицу уравнения состояния?
- 8.11. Опишите один цикл рекуррентной процедуры оценивания вектора состояния.
- 9. Анализ нелинейных систем радиоавтоматики.
- 9.1 Дайте общую характеристику метода статистической линеаризации.
- 9.2. Какие критерии статистической эквивалентности нелинейного элемента и лине й-ного эквивалента обычно применяются?
- 9.3 Как находятся коэффициенты статистической линеаризации по первому и второму критерию эквивалентности?
- 9.4. Как применяется метод статистической линеаризации для анализа нелинейной слелящей системы?
- 10. Дискретные системы радиоавтоматики
- 10.1. Какие системы называются импульсными?
- 10.2. Какие системы называются цифровыми?
- 10.3. Изобразите структурную схему импульсной следящей системы и укажите какую функцию в ней выполняет импульсный элемент?
- 10.4 Какую функцию выполняют в импульсной следящей системе идеальный и мпульсный элемент и формирующий элемент?
- 10.5 Что называется приведенной непрерывной частью импульсной системы?
- 10.6 Как определяется передаточная функция дискретной замкнутой следящей сист е-мы?
- 10.7 Как записать разностное уравнение, связывающее дискретные процессы на входе и выходе, по заданной передаточной функции системы?
- 10.8 Дайте определение комплексного коэффициента передачи дискретной системы?
- 10.9 Дайте определение условия устойчивости дискретной системы.
- 10.10 Как использовать критерий Гурвица для проверки устойчивости дискретной си стемы?
- 10.11 Как оценить устойчивость дискретной системы по критерию Найквиста?
- 10.12 Опишите схему определения отклика дискретной системы на детерминированное воздействие.
- 11. Цифровые системы радиоавтоматики
- 11.1 Перечислите достоинства цифровых систем радиоавтоматики по сравнению с аналоговыми.
- 11.2 Поясните работу аналого-цифрового преобразователя в цифровой системе.
- 11.3 Опишите функцию, выполняемую цифровым фильтром.
- 11.4 Поясните работу цифро-аналогового преобразователя.
- 11.5 Поясните принцип работы цифрового временного дискриминатора.
- 11.6 Изобразите схему цифрового дискриминатора в системе слежения по дальности. Поясните принцип работы.

- 11.7 Изобразите схему и поясните принцип работы цифрового фазового детектора.
- 11.8 Изобразите схему и поясните принцип работы цифрового частотного дискриминатора.
- 11.9 Как определить передаточную функцию цифрового фильтра по передаточной функции аналогового прототипа?
- 11.10 Изобразите каноническую схему построения цифрового фильтра.
- 11.11 Поясните принцип работы цифрового генератора опорного сигнала в системах частотной и фазовой автоподстройки.
- 11.12 Поясните принцип работы цифрового управляемого фазовращателя.
- 11.13 Поясните порядок анализа цифровых систем при детерминированных и случайных воздействиях.

Приложение П.З. Список задач для практических занятий и домашних заданий

Тема 1: Функциональная и структурная схемы систем радиоавтоматики. Передаточные функции замкнутых систем.

- [1] задачи № 1.1, 1.2, 1.3, 1.4.
- [2] задачи № 43, 44, 45, 46.

Тема 2: Устойчивость замкнутых систем радиоавтоматики.

- [1] задачи № 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7.
- [2] задачи № 91, 92, 93, 95, 97, 109, 135.

Тема 3: Анализ замкнутых следящих систем при детерминированных воздействиях.

[1] – задачи № 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10.

Согласована на портале № 5232

Тема 4: Анализ замкнутых следящих систем при случайных воздействиях.

[1] – задачи № 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8.

Тема 5: Оптимизация фильтров замкнутых следящих систем.

[1] – задачи № 3.1, 3.2, 3.3, 3.4, 3.5.

Тема 6: Анализ нелинейных систем радиоавтоматики.

[1] – задачи № 3.1, 3.2, 3.3, 3.4.

Тема 7: Анализ дискретных систем радиоавтоматики.

[1] – задачи № 3.1, 3.2, 3.3, 3.4, 3.5, 3.6.

ЛИТЕРАТУРА:

- 1) Радиоавтоматика: Учебно методическое пособие для проведения практических занятий и самостоятельной работы студентов / Чумаков А. С., Бернгардт А. С. 2012. 27 с. (https://edu.tusur.ru/training/publications/1745).
- 2) Бесекерский В.А. Сборник задач по теории автоматического регулировании и управления. // В.А. Бесекерский, А.Н. Герасимов, Л.Ф. Порфирьев, Е.А. Фабрикант, С.М. Федоров, В.И. Цветков. Под редакцией В.А. Бесекерского. Издание четвертое, стереотипное. Москва: Издательство «Наука». Главная редакция физико-математической литературы, 1972. 587 с.
- Е.С. Вентцель, Л. А. Овчаров. Задачи и упражнения по теории вероятностей. 6-е издание. М.: Издательский центр «Академия», 2005. 448 с.
- 2) Бернгардт А.С., Чумаков А.С. Сборник задач по теории вероятностей и математической статистики. Томск: Томский гос. ун-т систем упр. и радиоэлектроники, 2007. 268 с.

Приложение П.4 Темы лабораторных работ

- 1. Исследование следящих систем при детерминированных воздействиях.
- 2. Исследование следящих систем при случайных воздействиях.
- 3. Оптимизация следящих систем.

ЛИТЕРАТУРА:

1) Радиоавтоматика: Радиоавтоматика: Учебно - методическое пособие для проведения лабораторных работ / Чумаков А. С. – 2012. 35 с. (https://edu.tusur.ru/training/publications/1741)

Приложение П.5. Экзаменационные вопросы Первые вопросы

- 1. Классификация систем радиоавтоматики (РА).
- 2. Системы автоматической подстройки частоты. Структурная схема, принцип работы
- 3. Системы фазовой автоподстройки частоты. Структурная схема, принцип работы
- 4. Система автоматического сопровождения по направлению. Структурная схема, принцип работы
- Система автоматической регулировки усиления. Структурная схема, принцип работы
- 6. Обобщенная структурная схема системы радиоавтоматики. Дискриминационная характеристика
- 7. Передаточная функция системы РА. Комплексный коэффициент передачи
- 8. Импульсная переходная характеристика системы
- 9. Условия устойчивости систем радиоавтоматики. Анализ устойчивости систем РА
- 10. Анализ устойчивости с помощью алгебраического критерия. Критерий устойчивости Гурвица
- 11. Анализ устойчивости с помощью частотных критериев. Запас устойчивости по фазе и усилению
- 12. Как по заданной передаточной функции замкнутой системы определить устойчива система или неустойчива
- 13. Что такое частота среза и критическая частота? Как они определяются по амплитудно-фазовой характеристике разомкнутой системы
- 14. Что такое запасы устойчивости по фазе и усилению? Каким образом они определяются по амплитудно-фазовой характеристике разомкнутой системы
- 15. Основные показатели качества переходного процесса в системе радиоавтоматики
- 16. Статические и астатические системы управления. Понятие астатизма системы, порядка астатизма
- 17. Ошибки систем с астатизмом нулевого, первого и второго порядков в установившемся режиме
- 18. Принципы построения систем радиоавтоматики

Вторые вопросы

1. Передаточная функция разомкнутой системы

$$K(p) = \frac{k}{p(1+Tp)^2}.$$

Найти зависимость критического коэффициента усиления от постоянной времени Т.

- 2. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей задающее воздействие $\lambda(t)$ и управляемую величину y(t).
- 3. Что является объектом управления в системе АПЧ?

- 4.Составьте нелинейное дифференциальное уравнение для ошибки слежения системы радиоавтоматики.
- 5. Как по заданной передаточной функции замкнутой системы определить устойчива система или неустойчива.
- 6. Передаточная система разомкнутой системы

$$K_{p}(p) = \frac{3}{(1 + 0.2p)(1 + 0.01p)}.$$

Найти импульсную переходную характеристику замкнутой системы.

- 7. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей задающее воздействие $\lambda(t)$ и ошибку слежения x(t).
- 8. Что является управляемой величиной в системе ФАПЧ?
- 9. Как по комплексному коэффициенту передачи определить АЧХ и ФЧХ системы радиоавтоматики
- 10. Что такое частота среза и критическая частота? Как они определяются по амплитудно-фазовой характеристике разомкнутой системы.
- 11. Передаточная функция замкнутой системы

$$K_{\lambda Y}(P) = \frac{1}{(1 + 0.1p)(1 + 0.02p)(1 + 0.01p)}.$$

Определить управляемую величину y(t) (выходной сигнал) в установившемся режиме при задающем воздействии $\lambda(t) = 1(t)$.

- 12. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей шум на выходе дискриминатора $\xi(t)$ и ошибку слежения x(t).
- 13. Что является задающим воздействием в системе автоматического сопровождения по направлению.
- 14. Какие звенья систем радиоавтоматики называются типовыми?
- 15. Охарактеризуйте основные показатели качества переходного процесса в системе радиоавтоматики.
- 16. Передаточная функция разомкнутой системы

$$K_{p}(p) = \frac{k}{(1 + T_{1}p)(1 + T_{2}p)}.$$

Вычислить ошибку слежения x(t) в замкнутой системе при задающем воздействии $\lambda(t) = \alpha_1 t 1(t)$

- 17. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей шум на выходе дискриминатора $\xi(t)$ и управляемую величину y(t).
- 18. Что является управляемой величиной в радиолокационном импульсном дальномере следящего типа.
- 19. Если известно, что ошибка слежения в установившемся режиме является постоянной величиной, то, как найти ее численное значение.
- 20. Запишите передаточную функцию звена запаздывания и изобразите его амплитудно-фазовую характеристику.
- 21. Для системы АПЧ найдите передаточную функцию, связывающую нестабильность $\delta\omega_{\rm rc}$ собственной частоты подстраиваемого генератора и $\Delta\omega$, полагая $F(\Delta\omega) \cong S_{\pi}\Delta\omega$
- 22. Как классифицируются системы радиоавтоматики по характеру задающего воздействия?
- 23. С какой целью в систему АРУ подают напряжение задержки.
- 24. Как определить передаточную функцию, связывающую процессы в двух произвольных точках системы радиоавтоматики?
- 25. Что такое запасы устойчивости по фазе и усилению? Каким образом они определяются по амплитудно-фазовой характеристике разомкнутой системы.
- 26 Пепелаточная функция разомкнутой системы

$$K(p) = \frac{k}{p(1+Tp)^{2}}.$$

Найти зависимость критического коэффициента усиления от постоянной времени Т

- 27 . Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей задающее воздействие $\lambda(t)$ и управляемую величину y(t).
- 28. Что является объектом управления в системе АПЧ?
- 29. Составьте нелинейное дифференциальное уравнение для ошибки слежения системы радиоавтоматики.
- 30. Как по заданной передаточной функции замкнутой системы определить, устойчива система или неустойчива.
- 31. Передаточная система разомкнутой системы

$$K_{p}(p) = \frac{3}{(1+0.2p)(1+0.01p)}.$$

Найти импульсную переходную характеристику замкнутой системы.

- 32. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей задающее воздействие $\lambda(t)$ и ошибку слежения x(t).
- 33. Что является управляемой величиной в системе ФАПЧ?
- 34. Как по комплексному коэффициенту передачи определить АЧХ и ФЧХ системы радиоавтоматики
- 35. Что такое частота среза и критическая частота? Как они определяются по амплитудно-фазовой характеристике разомкнутой системы.
- 36. Передаточная функция замкнутой системы

$$K_{\lambda Y}(P) = \frac{1}{(1+0.1p)(1+0.02p)(1+0.01p)}.$$

Определить управляемую величину y(t) (выходной сигнал) в установившемся режиме при задающем воздействии $\lambda(t) = 1(t)$.

- 37. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей шум на выходе дискриминатора $\xi(t)$ и ошибку слежения x(t).
- 38. Что является задающим воздействием в системе автоматического сопровождения по направлению.
- 39. Какие звенья систем радиоавтоматики называются типовыми?
- 40. Охарактеризуйте основные показатели качества переходного процесса в системе радиоавтоматики.
- 41. Передаточная функция разомкнутой системы

$$K_{p}(p) = \frac{k}{(1 + T_{1}p)(1 + T_{2}p)}.$$

Вычислить ошибку слежения x(t) в замкнутой системе при задающем воздействии $\lambda(t)=\alpha_{\scriptscriptstyle 1}t1(t)$

42. Рассматривается структурная схема типовой системы радиоавтоматики. Напишите выражение для передаточной функции, связывающей шум на выходе дискриминатора $\xi(t)$ и управляемую величину y(t).