МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Проректор по учебной работе П.В. Сенченко «23» 12 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРОГРАММИРОВАНИЕ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.04 Электроника и наноэлектроника

Направленность (профиль) / специализация: Промышленная электроника

Форма обучения: заочная

Факультет: Заочный и вечерний факультет (ЗиВФ) Кафедра: Кафедра промышленной электроники (ПрЭ)

Курс: **1, 2** Семестр: **2, 3**

Учебный план набора 2021 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	2 семестр	3 семестр	Всего	Единицы
Лекционные занятия	4	2	6	часов
Практические занятия	4		4	часов
Лабораторные занятия		8	8	часов
в т.ч. в форме практической подготовки		8	8	часов
Самостоятельная работа	62	22	84	часов
Контрольные работы	2		2	часов
Подготовка и сдача зачета		4	4	часов
Общая трудоемкость	72	36	108	часов
(включая промежуточную аттестацию)			3	3.e.

Формы промежуточной аттестация	Семестр	Количество
Контрольные работы	2	1
Зачет	3	

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сенченко П.В.

Должность: Проректор по УР Дата подписания: 23.12.2020 Уникальный программный ключ: a1119608-cdff-4455-b54e-5235117c185c

1. Общие положения

1.1. Цели дисциплины

1. Формирование навыков моделирования и анализа устройств электронной техники с использованием математического аппарата, пакетов программ автоматизации математических расчетов, проектирования и анализа электронных схем, приемов программирования на современной высокотехнологичной объектно-ориентированной базе.

1.2. Задачи дисциплины

- 1. Дать студентам представление о структуре документов, используемых для хранения электрических схем в форме моделей.
- 2. Обучить студентов основам работы с программами автоматизации математических расчетов при проектировании, анализе и моделировании.
- 3. Познакомить студентов с основами программирования и моделирования на современной высокотехнологичной объектно-ориентированной базе.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль направленности (профиля) (major).

Индекс дисциплины: Б1.В.01.07.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

Индикаторы достижения		Планируемые результаты обучения по					
Компетенция	компетенции	дисциплине					
	Универсальные компетенции						
	Общепрофессиональные компетенции						
ОПК-2. Способен ОПК-2.1. Знает основные		Знает основные принципы проведения					
самостоятельно	принципы проведения	численных экспериментальных					
проводить	экспериментальных	исследований электрических схем и					
экспериментальные	исследований и	использования основных приемов					
исследования и	использования основных	обработки и представления полученных					
использовать основные	приемов обработки и	данных.					
приемы обработки и	представления полученных						
представления	данных						
полученных данных	ОПК-2.2. Умеет выбирать	Умеет выбирать эффективную методику					
	эффективную методику	численных экспериментальных					
	экспериментальных	исследований электрофизических					
	исследований	процессов.					
	ОПК-2.3. Владеет навыками	Владеет навыками проведения численных					
	проведения	исследований электрических схем,					
	экспериментальных	обработки и представления полученных					
	исследований, обработки и	данных.					
	представления полученных						
	данных						

ОПК-3. Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников	ОПК-3.1. Знает принципы поиска, хранения, обработки, анализа и представления информации, а также методы и средства обеспечения информационной безопасности	Знает принципы хранения, обработки, анализа и представления информации об электрической схеме, а также методы и средства её обработки.
и баз данных, соблюдая при этом основные требования информационной безопасности	ОПК-3.2. Умеет работать с источниками информации и базами данных, а также решать задачи обработки данных с помощью современных средств автоматизации	Умеет работать с источниками информации и базами данных, а также решать задачи моделирования электрических схем с помощью современных средств автоматизации.
	ОПК-3.3. Владеет практическими навыками поиска, хранения, обработки, анализа и представления в требуемом формате необходимой информации и обеспечения информационной безопасности при решении задач в области профессиональной деятельности	Владеет практическими навыками хранения, обработки, анализа и представления в требуемом формате необходимой информации о топологии электрических соединений и использования методов её обработки при решении задач в области профессиональной деятельности.
	Профессиональные к	сомпетенции
ПКС-1. Способен	ПКС-1.1. Знает основные	Знает основные приемы обработки и
использовать основные приемы обработки и	представления	представления экспериментальных и расчетных данных приборов и устройств
представления экспериментальных данных	экспериментальных и расчетных данных приборов и устройств электронной техники	электроники и наноэлектроники.
	ПКС-1.2. Умеет проводить обработку экспериментальных данных приборов и устройств электронной техники	Умеет проводить обработку экспериментальных данных приборов и устройств электроники и наноэлектроники
	ПКС-1.3. Владеет методикой обработки и представления экспериментальных и расчетных данных приборов и устройств электронной техники	Владеет методикой обработки и представления экспериментальных и расчетных данных приборов и устройств электроники и наноэлектроники

ПКС-11. Способен	ПКС-11.1. Знает	Знает физические и математические
строить простейшие	простейшие физические и	модели приборов, схем, устройств и
физические и	математические модели	установок электроники и наноэлектроники
математические	приборов, схем, устройств и	различного функционального назначения,
модели приборов, схем,	установок электроники и	а также стандартные программные
устройств и установок	наноэлектроники	средства их компьютерного
электроники и	различного	моделирования
наноэлектроники	функционального	
различного	назначения, а также	
функционального	стандартные программные	
назначения, а также	средства их компьютерного	
использовать	моделирования	
стандартные	ПКС-11.2. Умеет строить	Умеет строить физические и
программные средства	простейшие физические и	математические модели приборов, схем,
их компьютерного	математические модели	устройств и установок электроники и
моделирования	приборов, схем, устройств и	наноэлектроники различного
	установок электроники и	функционального назначения, а также
	наноэлектроники	использовать стандартные программные
	различного	средства их компьютерного
	функционального	моделирования
	назначения, а также	
	использовать стандартные	
	программные средства их	
	компьютерного	
	моделирования	
	ПКС-11.3. Владеет	Владеет навыками построения физических
	навыками построения	и математических моделей приборов, схем
	простейших физических и	устройств и установок электроники и
	математических моделей	наноэлектроники различного
	приборов, схем, устройств и	функционального назначения, а также
	установок электроники и	использования стандартных программных
	наноэлектроники	средств их компьютерного моделирования
	различного	
	функционального	
	назначения, а также	
	использования стандартных	
	программных средств их	
	компьютерного	
	моделирования	

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Виды учебной деятельности		Семестры	
		2 семестр	3 семестр
Контактная аудиторная работа обучающихся с	20	10	10
преподавателем, всего			
Лекционные занятия	6	4	2

Практические занятия	4	4	
Лабораторные занятия	8		8
Контрольные работы	2	2	
Самостоятельная работа обучающихся, в т.ч. контактная	84	62	22
внеаудиторная работа обучающихся с преподавателем, всего			
Подготовка к контрольной работе	32	32	
Подготовка к тестированию	36	30	6
Подготовка к зачету	8		8
Подготовка к лабораторной работе, написание отчета	8		8
Подготовка и сдача зачета	4		4
Общая трудоемкость (в часах)	108	72	36
Общая трудоемкость (в з.е.)	3	2	1

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

1 аолица 5.1 — Разделы (темы) дис		ны и ви,	ды учс		Всего	. M
Названия разделов (тем) дисциплины	Лек. зан.,	Прак. зан., ч	Лаб. раб.	Сам. раб.,	часов (без	Формируемые компетенции
	7			1	зачета)	
	2	семест	p			
1 Общие вопросы математического	1	1	-	20	24	ОПК-2, ОПК-3,
моделирования электромеханических						ПКС-1, ПКС-11
систем						
2 Методы решения систем	2	2	-	22	26	ОПК-2, ОПК-3,
дифференциальных уравнений,						ПКС-1, ПКС-11
описывающих процессы в						
электротехнических устройствах						
3 Структура электрической схемы,	1	1	-	20	22	ОПК-2, ОПК-3,
описание её топологии						ПКС-1, ПКС-11
Итого за семестр	4	4	0	62	70	
	3	семест	p			
4 Математическое описание	1	-	4	11	16	ОПК-2, ОПК-3,
двигателя постоянного тока						ПКС-1, ПКС-11
независимого возбуждения						
5 Математическое описание	1	-	4	11	16	ОПК-2, ОПК-3,
асинхронного двигателя						ПКС-1, ПКС-11
Итого за семестр	2	0	8	22	32	
Итого	6	4	8	84	102	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции	
2 семестр				

1 Общие вопросы	Классификация	1	ОПК-3, ПКС-1
математического	электромеханических систем.	1	011K-3, 11KC-1
моделирования	Классификация моделей. Статика и		
электромеханических	динамика. Представление моделей		
систем	электромеханических систем в		
CHCICM	пространстве состояний. Общая		
	постановка задачи Коши.		
	Показатели качества регулирования		
	по временным и частотным		
	характеристикам.		
	Итого	1	
2 Manager a average average		2	
2 Методы решения систем	Дифференциальные уравнения	2	ОПК-2, ОПК-3,
дифференциальных	состояния для электрических цепей		ПКС-1, ПКС-11
уравнений, описывающих	по законам Кирхгофа. Законы		
процессы в	коммутации в электрических цепях.		
электротехнических	Представление дифференциальных		
устройствах	уравнения в нормальной форме		
	Коши. Обзор аналитических и		
	численных методов решения		
	дифференциальных уравнений.		
	Решение дифференциальных		
	уравнений операторным методом с		
	помощью преобразований Лапласа		
	и численным методом Эйлера на		
	примере электрических цепей		
	первого и второго порядка с		
	нулевыми и ненулевыми		
	начальными условиями.		
	Представление математического		
	описания динамического объекта в		
	виде структурной схемы с помощью		
	прямого преобразования Лапласа.		
	Примеры на электрических цепях		
	первого и второго порядка.		
	Итого	2	
3 Структура	Имитационное моделирование.	1	ОПК-2, ОПК-3,
электрической схемы,	Spice-модель в САПР.		ПКС-1, ПКС-11
описание её топологии	Итого	1	
	Итого за семестр	4	
	3 семестр		
4 Математическое	Физический принцип работы	1	ОПК-2, ОПК-3,
описание двигателя	двигателя постоянного тока (ДПТ).		ПКС-1, ПКС-11
постоянного тока	Математическое описание ДПТ в		
независимого	форме дифференциальных		
возбуждения	уравнений. Решение полученных		
	уравнений с помощью операторного		
	метода и численного метода Эйлера.		
	Структурная схема ДПТ. Уравнения		
	для статических режимов.		
	Итого	1	

5 Математическое	Принцип работы асинхронного	1	ОПК-2, ОПК-3,
описание асинхронного	электродвигателя (АД). Уравнения		ПКС-1, ПКС-11
двигателя	для статических, механических и		
	электромеханических		
	характеристик. Математическая		
	модель АД в неподвижной		
	двухфазной системе координат.		
	Структурная схема асинхронного		
	электродвигателя		
	Итого	1	
	2		
	Итого	6	

5.3. Контрольные работы

Виды контрольных работ и часы на контрольные работы приведены в таблице 5.3.

Таблица 5.3 – Контрольные работы

- 100	Temperation pacera		
№ п.п.	Виды контрольных работ	Трудоемкость, ч	Формируемые компетенции
2 семестр			
1	Контрольная работа	2	ОПК-2, ОПК-3, ПКС-1, ПКС-11
Итого за семестр		2	
Итого		2	

5.4. Лабораторные занятия

Наименование лабораторных работ приведено в таблице 5.4.

Таблица 5.4 – Наименование лабораторных работ

Названия разделов (тем)	Наименование лабораторных	Тругоомиссителя	Формируемые
дисциплины	работ	Трудоемкость, ч	компетенции
	3 семестр		
4 Математическое	Математическое	4	ОПК-2, ОПК-3,
описание двигателя	моделирование двигателя		ПКС-1, ПКС-11
постоянного тока	постоянного тока		
независимого возбуждения	независимого возбуждения		
	Итого	4	
5 Математическое	Математическое	4	ОПК-2, ОПК-3,
описание асинхронного	моделирование асинхронного		ПКС-1, ПКС-11
двигателя	электродвигателя		
	Итого	4	
	8		
	Итого	8	

5.5. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.5.

Таблица 5.5 – Наименование практических занятий (семинаров)

Названия разделов (тем)	Наименование практических	Трудоемкость,	Формируемые			
дисциплины	занятий (семинаров)	Ч	компетенции			
2 семестр						

1 Общие вопросы	Анализ показателей качества	1	ОПК-3, ПКС-1
математического	динамики электромеханических		
моделирования	систем на примере фильтра		
электромеханических систем	низких частот.		
	Итого	1	
2 Методы решения систем	Составление	2	ОПК-2, ОПК-3,
дифференциальных	дифференциальных уравнений		ПКС-1, ПКС-11
уравнений, описывающих	для электрических цепей по		
процессы в	законам Кирхгофа.		
электротехнических	Решение систем		
устройствах	дифференциальных уравнений		
	операторным методом и		
	численным методом Эйлера.		
	Представление математической		
	модели электрической цепи в		
	форме структурной		
	операторной схемы с		
	начальными условиями.		
	3.Представление		
	математического описания		
	динамического объекта в виде		
	структурной схемы с помощью		
	прямого преобразования		
	Лапласа. Примеры на		
	электрических цепях первого и		
	второго порядка.		
	Итого	2	
3 Структура электрической	Имитационное моделирование.	1	ОПК-2, ОПК-3,
схемы, описание её	Spice-модель в САПР.		ПКС-1, ПКС-11
топологии	Итого	1	
	Итого за семестр	4	
	Итого	4	

5.6. Курсовой проект / курсовая работа

Не предусмотрено учебным планом

5.7. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.7.

Таблица 5.7 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

таолица 5.7 – Биды самостоятельной раооты, трудоемкость и формируемые компетенции						
Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость, ч	Формируемые компетенции	Формы контроля		
	2 семестр					
1 Общие вопросы	Подготовка к	10	ОПК-2, ОПК-3,	Контрольная		
математического	контрольной работе		ПКС-1, ПКС-11	работа		
моделирования	Подготовка к	10	ОПК-2, ОПК-3,	Тестирование		
электромеханических	тестированию		ПКС-1, ПКС-11			
систем	Итого	20				

2 Методы решения систем	Подготовка к контрольной работе	12	ОПК-2, ОПК-3, ПКС-1, ПКС-11	Контрольная работа
дифференциальных	контрольной расоте		Time 1, Time 11	paoora
уравнений,	Подготовка к	10	ОПК-2, ОПК-3,	Тестирование
описывающих процессы	тестированию		ПКС-1, ПКС-11	
в электротехнических	Итого	22		
устройствах	711010	22		
3 Структура	Подготовка к	10	ОПК-2, ОПК-3,	Контрольная
электрической схемы,	контрольной работе		ПКС-1, ПКС-11	работа
описание её топологии	Подготовка к	10	ОПК-2, ОПК-3,	Тестирование
	тестированию		ПКС-1, ПКС-11	
	Итого	20		
	Итого за семестр	62		
	3 се	еместр		
4 Математическое	Подготовка к зачету	4	ОПК-2, ОПК-3,	Зачёт
описание двигателя			ПКС-1, ПКС-11	
постоянного тока	Подготовка к	3	ОПК-2, ОПК-3,	Тестирование
независимого	тестированию		ПКС-1, ПКС-11	
возбуждения	Подготовка к	4	ОПК-2, ОПК-3,	Лабораторная
	лабораторной		ПКС-1, ПКС-11	работа
	работе, написание			
	отчета			
	Итого	11		
5 Математическое	Подготовка к зачету	4	ОПК-2, ОПК-3,	Зачёт
описание асинхронного			ПКС-1, ПКС-11	
двигателя	Подготовка к	3	ОПК-2, ОПК-3,	Тестирование
	тестированию		ПКС-1, ПКС-11	
	Подготовка к	4	ОПК-2, ОПК-3,	Лабораторная
	лабораторной		ПКС-1, ПКС-11	работа
	работе, написание			
	отчета			
	Итого	11		
	Итого за семестр	22		
	Подготовка и сдача	4		Зачет
	зачета			
	Итого	88		

5.8. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.8.

Таблица 5.8 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Формануомило	Виды	учебной	деятель	ности	
Формируемые компетенции	Лек.	Прак.	Лаб.	Сам.	Формы контроля
компстенции	зан.	зан.	раб.	раб.	
ОПК-2	+	+	+	+	Зачёт, Контрольная работа, Лабораторная
					работа, Тестирование
ОПК-3	+	+	+	+	Зачёт, Контрольная работа, Лабораторная
					работа, Тестирование

ПКС-1	+	+	+	+	Зачёт, Контрольная работа, Лабораторная
					работа, Тестирование
ПКС-11	+	+	+	+	Зачёт, Контрольная работа, Лабораторная
					работа, Тестирование

6. Рейтинговая система для оценки успеваемости обучающихся

Рейтинговая система не используется

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

1. Методы математической физики: Учебное пособие предназначено для студентов факультета дистанционного обучения ТУСУРа / Ю. В. Гриняев, В. М. Ушаков, Л. Л. Миньков, С. В. Тимченко - 2012. 148 с. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/3379.

7.2. Дополнительная литература

1. Компьютерное моделирование систем: Курс лекций / В. М. Дмитриев, Т. В. Ганджа, Т. Е. Григорьева - 2020. 260 с. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/9294.

7.3. Учебно-метолические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Математическое моделирование и программирование: Руководство к организации самостоятельной работы / Ю. Н. Тановицкий, Д. А. Савин 2011. 49 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/764.
- 2. Электроника, электротехника, схемотехника: Методические указания и рекомендации для проведения практических, самостоятельных, лабораторных, курсовых и домашних занятий / Р. О. Черепанов 2017. 46 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/6776.
- 3. Теория автоматического управления: Руководство к лабораторным работам / Ю. М. Лебедев 2017. 48 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/6910.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

8.2. Материально-техническое и программное обеспечение для практических занятий

Вычислительная лаборатория: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 2016 ауд.

Описание имеющегося оборудования:

- Персональные компьютеры (16 шт.);
- Интерактивная доска «Smart-board» DViT (1 шт.);
- Мультимедийный проектор NEC (1 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- Asimec;
- LTspice 4;
- LibreOffice;
- PTC Mathcad 13, 14;
- Windows XP;

Вычислительная лаборатория / Компьютерный класс: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 3016 ауд.

Описание имеющегося оборудования:

- Компьютер Intel(R) Core (TM)2 CPU (16 шт.);
- Интерактивная доска «Smart-board» DViT (1 шт.);
- Мультимедийный проектор NEC (1 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- ASIMEC;
- Google Chrome;
- LTspice 4;
- LibreOffice;
- Mathworks Matlab;
- PTC Mathcad 13, 14;
- Windows XP Pro;

8.3. Материально-техническое и программное обеспечение для лабораторных работ

Вычислительная лаборатория: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 2016 ауд.

Описание имеющегося оборудования:

- Персональные компьютеры (16 шт.);
- Интерактивная доска «Smart-board» DViT (1 шт.);
- Мультимедийный проектор NEC (1 шт.);
- Комплект специализированной учебной мебели;

- Рабочее место преподавателя.
- Программное обеспечение:
- Adobe Acrobat Reader:
- Asimec:
- Google Chrome;
- LTspice 4;
- LibreOffice;
- Mathworks Matlab;
- PTC Mathcad 13, 14;
- Windows XP;

Вычислительная лаборатория / Компьютерный класс: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 3016 ауд.

Описание имеющегося оборудования:

- Компьютер Intel(R) Core (TM)2 CPU (16 шт.);
- Интерактивная доска «Smart-board» DViT (1 шт.);
- Мультимедийный проектор NEC (1 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- ASIMEC;
- Google Chrome;
- LTspice 4;
- LibreOffice;
- Mathworks Matlab;
- PTC Mathcad 13, 14;
- Windows XP Pro;

8.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.5. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с нарушениями слуха предусмотрено использование

звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
1 Общие вопросы математического моделирования	ОПК-2, ОПК-3, ПКС-1, ПКС-11	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
электромеханических систем		Тестирование	Примерный перечень тестовых заданий
2 Методы решения систем дифференциальных уравнений, описывающих	ОПК-2, ОПК-3, ПКС-1, ПКС-11	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
процессы в электротехнических устройствах		Тестирование	Примерный перечень тестовых заданий
3 Структура электрической схемы, описание её топологии	ОПК-2, ОПК-3, ПКС-1, ПКС-11	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Тестирование	Примерный перечень тестовых заданий
4 Математическое описание двигателя постоянного тока	ОПК-2, ОПК-3, ПКС-1, ПКС-11	Зачёт	Перечень вопросов для зачета
независимого возбуждения		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
5 Математическое описание асинхронного двигателя	ОПК-2, ОПК-3, ПКС-1, ПКС-11	Зачёт	Перечень вопросов для зачета
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

дисциплине

дисциплине				
Оценка	Баллы за ОМ	Формулировка требований к степени сформированности планируемых результатов обучения		
		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков
3	от 60% до	общие, но не	в целом успешно,	в целом
(удовлетворительно)	69% от	структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков
4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% ot	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

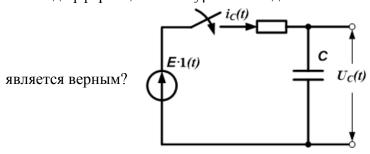
Оценка	Формулировка требований к степени компетенции
2	Не имеет необходимых представлений о проверяемом материале
(неудовлетворительно)	или
	Знать на уровне ориентирования, представлений. Обучающийся знает
	основные признаки или термины изучаемого элемента содержания, их
	отнесенность к определенной науке, отрасли или объектам, узнает в
	текстах, изображениях или схемах и знает, к каким источникам нужно
	обращаться для более детального его усвоения.
3	Знать и уметь на репродуктивном уровне. Обучающихся знает
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях.
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на
	репродуктивном уровне, указывать на особенности и взаимосвязи
	изученных объектов, на их достоинства, ограничения, историю и
	перспективы развития и особенности для разных объектов усвоения.

5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает
	изученный элемент содержания системно, произвольно и доказательно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях, учитывая и указывая связи и зависимости между этим
	элементом и другими элементами содержания дисциплины, его
	значимость в содержании дисциплины.

9.1.1. Примерный перечень тестовых заданий

- 1. СДУ в нормальной форме Коши?
 - 1. СДУ, включающая в себя произведения переменных величин и их производных;
 - 2. СДУ, составленная по законам Кирхгофа и Ньютона;
 - 3. СДУ, разрешенная относительно производных переменных величин;
 - 4. СДУ высокого порядка.
- 2. Какими методами могут быть решены линейные дифференциальные уравнения?
 - 1. только аналитическими методами;
 - 2. только численными методами;
 - 3. аналитическими и численными методами;
 - 4. операторным методом и методом Эйлера.
- 3. Какими методами могут быть решены нелинейные дифференциальные уравнения могут?
 - 1. только аналитическими методами;
 - 2. только численными методами;
 - 3. аналитическими и численными методами;
 - 4. классическим и операторным.
- 4. Что такое решение задачи Коши?
 - 1. это нахождение решения однородной СДУ;
 - 2. это нахождение решения СДУ, удовлетворяющего заданным начальным условиям;
 - 3. это нахождение решения неоднородной СДУ;
 - 4. это нахождение решения СДУ с применением преобразования Лапласа.
- 5. Какое решение можно получить в среде MathCAD, решая уравнения или системы уравнений с помощью блока given-find?
 - 1. точное;
 - 2. минимальное;
 - 3. приближенное;
 - 4. максимальное.
- 6. Какая из записей прямого преобразования Лапласа для функции Хевисайда f(t)=1(t) верна?

1.
$$F(p) = p^2$$
;


2.
$$F(p) = \frac{1}{p+1}$$
;

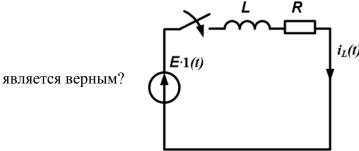
3.
$$F(p)=p$$
;

$$_{4.} F(p) = \frac{1}{p}.$$

- 7. Какие показатели являются показателями качества переходных процессов в ЭМС (электромеханическая система)?
 - 1. время переходного процесса, перерегулирование, время нарастания переходного процесса;
 - 2. статизм, перерегулирование;
 - 3. время максимального переходного процесса, жесткость статических характеристик;
 - 4. жесткость статических характеристик, максимальное амплитудное значение напряжения.

- 8. Какие виды информационной безопасности вы знаете?
 - 1. персональная, корпоративная, государственная;
 - 2. клиентская, серверная, сетевая;
 - 3. локальная, глобальная, смешанная;
 - 4. все перечисленные варианты верны.
- 9. С какими основными рисками информационной безопасности вы знакомы?
 - 1. искажение, уменьшение объем, перекодировка информации;
 - 2. техническое вмешательство, выведение из строя оборудование сети;
 - 3. потеря, искажение, утечка информации;
 - 4. все перечисленные варианты верны.
- 10. Какие существуют наиболее важные меры политики безопасности?
 - 1. аудит, анализ затрат на проведение защитных мер;
 - 2. аудит, анализ безопасности;
 - 3. удит, анализ уязвимостей, риск ситуаций;
 - 4. нет правильного ответа.
- 11. Как называется список соединений цепи, превращающий графическое изображение схемы в таблицу узлов и ветвей?
 - 1. Netlist;
 - 2. Матрица инцидентности;
 - 3. Структурная матрица;
 - 4. Матрица инциденций.
- 12. Для чего используется в системе MathCAD операция Add Line?
 - 1. Для добавления уравнения в СЛАУ;
 - 2. Для добавления линии на графике;
 - 3. Для добавления позиции под оператор в программном блоке;
 - 4. Среди перечисленных нет правильного варианта ответа.
- 13. Как при программировании в программе MathCAD записывается в операторе if действие, выполняемое в случае неверного (false) условия?
 - 1. Перед оператором otherwise;
 - 2. После оператора otherwise;
 - 3. После оператора else;
 - 4. Перед оператором else.
- 14. Какое дифференциальное уравнение для схемы RC-цепочки, приведенной на рисунке,

1.
$$RC \cdot \frac{dU_C(t)}{dt} + U_C(t) = E \cdot 1(t)$$
;


2.
$$-RC \cdot \frac{dU_C(t)}{dt} + U_C(t) = E \cdot 1(t);$$

3.
$$R \cdot \frac{dU_C(t)}{dt} + U_C(t) = E \cdot 1(t)$$
;

4.
$$C \cdot \frac{dU_C(t)}{dt} + U_C(t) = E \cdot 1(t)$$

- 15. Как задается точность численных расчетов в MathCAD?
 - 1. При помощи переменной ТОL;
 - 2. Во вкладке меню ФОРМАТ\РЕЗУЛЬТАТ\;

- 3. В зависимости от аргумента вычислений;
- 4. Точность вычислений MathCAD задает самостоятельно.
- 16. Какая функция создает в среде MathCAD единичную матрицу порядка n?
 - 1. diag(n);
 - 2. stack(n);
 - 3. rref(n);
 - 4. identity(n).
- 17. Какое дифференциальное уравнение для схемы RL-цепочки, приведенной на рисунке,

1.
$$i(t) \cdot R + L \cdot \frac{di(t)}{dt} = 0$$
;

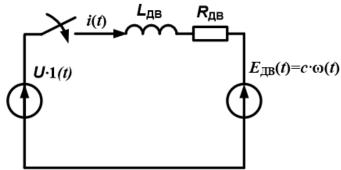
2.
$$i(t) \cdot R + L \cdot \frac{di(t)}{dt} = E \cdot 1(t)$$
;

3.
$$i(t) \cdot R - L \cdot \frac{di(t)}{dt} = E \cdot 1(t);$$

4.
$$i(t) + \frac{R}{L} \cdot \frac{di(t)}{dt} = E \cdot 1(t)$$

- 18. На какую возмущающую функцию реакцией динамической системы является единичная переходная функция h(t)?
 - 1. на единичную возмущающую функцию Хевисайда 1(t);
 - 2. на единичную возмущающую функцию Хевисайда 1(t) при ненулевых начальных условиях;
 - 3. на гармоническую возмущающую функцию при ненулевых начальных условиях;
 - 4. на единичную возмущающую функцию Хевисайда 1(t) при нулевых начальных условиях.
- 19. Какое уравнение механического равновесия двигателя для установившегося режима работы является верным?

1.
$$M(t) = J_{\text{AB}} \cdot \frac{d\omega(t)}{dt}$$
;

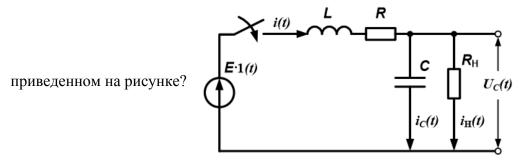

2.
$$M(t) = M_C \cdot l(t)$$
;

3.
$$M(t) - M_C \cdot 1(t) = J_{AB} \cdot \frac{d\omega(t)}{dt}$$
;

4.
$$M(t) - M_C \cdot 1(t) = \frac{d\omega(t)}{dt}$$
.

- 20. Какие электромеханические объекты, описываются дифференциальными уравнениями первого порядка?
 - 1. RL-фильтр низких частот, RC-фильтр низких частот;
 - 2. RLC-фильтр низких частот;
 - 3. ДПТ НВ;

- 4. RLC-фильтр низких частот, RL-фильтр низких частот.
- 21. Чему по закону Кирхгофа равна сумма напряжений в узле электрической цепи постоянного тока?
 - 1. Сумме токов в этом узле;
 - 2. Сумме ЭДС источников напряжения этого контура;
 - 3. Закон неверно сформулирован;
 - 4. 0.
- 22. Какое дифференциальное уравнение схемы замещения якорной цепи ДПТ НВ, представленной на рисунке, является верным?


1.
$$U \cdot \mathbf{l}(t) = R_{\text{JB}} \cdot i(t) + L_{\text{JB}} \cdot \frac{di(t)}{dt} + E_{\text{JB}}(t)$$
;

2.
$$U \cdot \mathbf{1}(t) = R_{\text{DB}} \cdot i(t) + L_{\text{DB}} \cdot \frac{di(t)}{dt}$$
;

3.
$$U \cdot 1(t) = R_{\text{ZIB}} \cdot i(t) - L_{\text{ZIB}} \cdot \frac{di(t)}{dt} + E_{\text{ZIB}}(t)$$
;

4.
$$U \cdot 1(t) = R_{\text{JB}} \cdot i(t) + L_{\text{JB}} \cdot \frac{di(t)}{dt} - E_{\text{JB}}(t)$$

- 23. Чему по закону Кирхгофа равна сумма токов в узле электрической цепи переменного тока?
 - 1. Сумме напряжений;
 - 2. Сумме ЭДС источников напряжения этого контура;
 - 3. Сумме отрицательных токов;
 - 4. 0
- 24. Где при программировании в программе MathCAD размещается проверяемое условие в операторе if?
 - 1. Слева от оператора if;
 - 2. Справа от оператора if;
 - 3. После оператора else;
 - 4. Перед оператором else.
- 25. Что такое алгоритмическое проектирование?
 - 1. это разработка структурных, функциональных и принципиальных схем технических систем;
 - 2. разработка алгоритмов функционирования технических систем, и программного обеспечения для управления системой в целом и ее отдельными блоками с помощью ЭВМ и создание общего математического обеспечения;
 - 3. выбор формы и материалов, подбор унифицированных изделий, их пространственное расположение и т.п.;
 - 4. разработка и создания технической системы, реализующей требуемый управляемый технологический процесс.
- 26. Что происходит с увеличением сопротивления нагрузки фильтра низких частот,

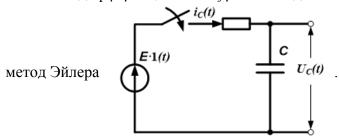
- 1. увеличивается установившееся значение выходного напряжения, уменьшается установившееся значение тока, протекающего через катушку индуктивности;
- 2. уменьшается установившееся значение выходного напряжения;
- 3. увеличивается установившееся значение тока, протекающего через катушку индуктивности;
- 4. уменьшается установившееся значение выходного напряжения, увеличивается установившееся значение тока, протекающего через катушку индуктивности.
- 27. Какой вариант из приведенных СДУ в нормальной форме Коши соответствует данной

EXEMPT: CXEMPS:
$$\begin{bmatrix}
E \cdot 1(t) = U_{C}(t) + L \cdot \frac{di_{L}(t)}{dt} + i_{L}(t) \cdot R \\
C \cdot \frac{dU_{C}(t)}{dt} = i_{L}(t) + \frac{E \cdot 1(t)}{R_{H}} - \frac{U_{C}(t)}{R_{H}}
\end{bmatrix}$$
2.
$$\frac{d}{dt} \begin{bmatrix} i_{L}(t) \\ U_{C}(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{R_{H}} \cdot C \end{bmatrix} \cdot \begin{bmatrix} i_{L}(t) \\ U_{C}(t) \end{bmatrix} + \begin{bmatrix} \frac{E}{L} \\ \frac{E}{R_{H}} \cdot C \end{bmatrix} \cdot 1(t);$$
3.
$$\begin{cases}
\frac{di_{L}(t)}{dt} = \frac{1}{L} \cdot [E \cdot 1(t) - i_{L}(t) \cdot R - U_{C}(t)] \\
\frac{dU_{C}(t)}{dt} = \frac{1}{C} \cdot \begin{bmatrix} i_{L}(t) + \frac{E \cdot 1(t)}{R_{H}} - \frac{U_{C}(t)}{R_{H}} \end{bmatrix};$$
4.
$$\frac{d}{dt} \begin{bmatrix} i(t) \\ U_{C}(t) \end{bmatrix} = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{R_{H}} \cdot C \end{bmatrix} \cdot \begin{bmatrix} i(t) \\ U_{C}(t) \end{bmatrix} + \begin{pmatrix} \frac{E}{L} \\ \frac{L}{U} \end{bmatrix} \cdot 1(t)$$

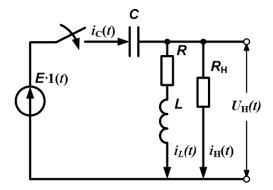
28. Как называется в среде MathCAD, функция, выполняющая операцию раскрытия скобок и

приведения подобных?

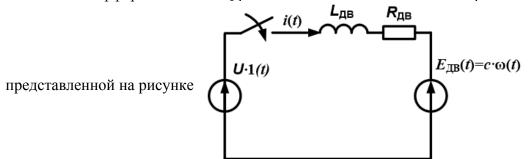
- 1. factor;
- 2. simplify;
- 3. expand;
- 4. substitute.
- 29. Какие методы решения СДУ относятся к численным методам?
 - 1. метод Эйлера, метод Рунге-Кутта;
 - 2. метод определителей Вандермонда, операторный метод;
 - 3. классический метод;
 - 4. все перечисленные методы.
- 30. Имеет ли он решение система линейных алгебраических уравнений, описывающих электрическую цепь постоянного тока, если определитель её основной матрицы не равен 0?
 - 1. Да;
 - 2. Нет;
 - 3. Только для однородной системы уравнений;
 - 4. Среди перечисленных нет правильного варианта ответа.
- 31. Для решения каких задач можно использовать Mathcad?
 - 1. для решения задач в различных отраслях науки и техники, финансов и экономики, физики и астрономии, строительства и архитектуры, математики и статистики, организации производства и управления;
 - 2. для инженерного моделирования электромагнитных, тепловых и механических задач методом конечных элементов;
 - 3. для схемотехнического моделирования аналоговых и цифровых радиоэлектронных устройств;
 - 4. для проектирования, изготовления многослойных печатных плат аналоговых, цифровых и цифро-аналоговых устройств.


9.1.2. Перечень вопросов для зачета

- 1. Приведите основную классификацию математических моделей.
- 2. Что называется математической моделью?
- 3. Поясните основные пункты концепции структурного моделирования динамических систем.
- 4. Укажите основные цели постановки эксперимента на структурных моделях.
- 5. В каких случаях применимы аналитические методы моделирования электромеханических систем?
- 6. Перечислите основные этапы математического моделирования электромеханических систем
- 7. Что такое электромеханическая система?
- 8. Классификация электромеханических преобразователей.
- 9. Классификация силовых преобразователей энергии.
- 10. Классификация электромеханических систем.
- 11. Основные режимы работы электромеханических систем.
- 12. Два основных вида методов решения систем дифференциальных уравнений.
- 13. Что такое переменные состояния?
- 14. Что такое система дифференциальных уравнений, записанная в нормальной форме Коши?
- 15. Что такое функция Хэвисайда?
- 16. Определение задачи Коши.
- 17. Основные виды аналитических методов решения систем дифференциальных уравнений.
- 18. Перечислите известные Вам численные методы решения систем дифференциальных уравнений.
- 19. Алгоритм нахождения задачи Коши классическим методом.
- 20. Алгоритм нахождения собственных значений и собственных векторов матрицы А.
- 21. Принцип составления характеристического уравнения.
- 22. Как найти частное решение неоднородной системы дифференциальных уравнений?
- 23. Перечислите известные Вам численные методы решения систем линейных алгебраических уравнений.


- 24. Принцип метода обратной матрицы для решения систем линейных алгебраических уравнений.
- 25. Принцип метода Крамера для решения систем линейных алгебраических уравнений.
- 26. Что такое передаточная функция?
- 27. Что такое преобразование Лапласа?
- 28. Построение переходных характеристик.
- 29. Построение частотных характеристик.
- 30. Параметры моделирования.
- 31. Основные этапы моделирования.
- 32. Схема замещения якорной цепи и математическая модель в нормальной форме Коши ДПТ HB.
- 33. Составьте математическую модель ДПТ НВ в нормальной форме Коши.
- 34. Назовите переменные состояния для ДПТ НВ.
- 35. Основные уравнения и характеристики динамических режимов работы двигателей постоянного тока.
- 36. Что позволяет определить и рассчитать схема замещения асинхронного двигателя?
- 37. Как влияет изменение частоты питающего напряжения на основные параметры и характеристики двигателя?
- 38. Как составляют структурные схемы асинхронного двигателя?

9.1.3. Примерный перечень вариантов (заданий) контрольных работ


- 1. Перечислите и поясните основные этапы создания математической модели?
- 2. Алгоритм нахождения задачи Коши классическим методом.
- 3. Перечислите известные Вам численные методы решения систем дифференциальных уравнений.
- 4. Перечислите достоинства и недостатки численных и аналитических методов решения дифференциальных уравнений.
- 5. Что такое система дифференциальных уравнений, записанная в нормальной форме Коши? Приведите пример.
- 6. Принцип метода Крамера для решения систем линейных алгебраических уравнений.
- 7. Запишите обыкновенное дифференциальное уравнение в общем виде и приведите для него расчетную формулу по методу Эйлера.
- 8. Сравните между собой основные программные пакеты для моделирования электротехнических схем и охарактеризуйте области их применения.
- 9. Как осуществляется прямое преобразование Лапласа систем дифференциальных уравнений?
- 10. Запишите дифференциальное уравнение для схемы, приведенной на рисунке, используя

11. Запишите СДУ в нормальной форме Коши для схемы, приведенной на рисунке

12. Запишите дифференциальное уравнение схемы замещения якорной цепи ДПТ НВ,

9.1.4. Темы лабораторных работ

- 1. Математическое моделирование двигателя постоянного тока независимого возбуждения
- 2. Математическое моделирование асинхронного электродвигателя

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.2.

Таблица 9.2 – Дополнительные материалы оценивания для лиц с ограниченными

возможностями здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки
Категории обучающихся	материалов	результатов обучения
С нарушениями слуха	Тесты, письменные	Преимущественно письменная
	самостоятельные работы, вопросы	проверка
	к зачету, контрольные работы	
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная
	зачету, опрос по терминам	проверка (индивидуально)
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно
двигательного аппарата	контрольные работы, письменные	дистанционными методами
	самостоятельные работы, вопросы	
	к зачету	
С ограничениями по	Тесты, письменные	Преимущественно проверка
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися
показаниям	к зачету, контрольные работы,	исходя из состояния
	устные ответы	обучающегося на момент
		проверки

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ПрЭ протокол № 12 от «14 » 12 2020 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Заведующий обеспечивающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Начальник учебного управления	Е.В. Саврук	Согласовано, fa63922b-1fce-4a6a- 845d-9ce7670b004c
Декан ЗиВФ	И.В. Осипов	Согласовано, 126832c4-9aa6-45bd- 8e71-e9e09d25d010
ЭКСПЕРТЫ:		
Профессор, каф. ПрЭ	Н.С. Легостаев	Согласовано, 6332ca5f-c16e-4579- bbc4-ee49773dfd8d
Доцент, каф. ПрЭ	Д.О. Пахмурин	Согласовано, ce9e048a-2a49-44a0- b2ab-bc9421935400
РАЗРАБОТАНО:		
Заведующий кафедрой промышленной электроники (ПрЭ), каф. ПрЭ	С.Г. Михальченко	Разработано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Доцент, каф. ПрЭ	Н.А. Воронина	Разработано, 27ccd7d0-ea7f-47e3- be95-f76a35dd4735