МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ
Проректор по УР
Сенченко П.В.
«13» 12 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАТЕРИАЛЫ НЕЛИНЕЙНОЙ ОПТИКИ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 12.03.03 Фотоника и оптоинформатика

Направленность (профиль) / специализация: Фотоника нелинейных, волноводных и

периодических структур Форма обучения: **очная**

Факультет: Факультет электронной техники (ФЭТ) Кафедра: Кафедра электронных приборов (ЭП)

Курс: **4** Семестр: **7**

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	7 семестр	Всего	Единицы
Лекционные занятия	26	26	часов
Практические занятия	26	26	часов
в т.ч. в форме практической подготовки	24	24	часов
Лабораторные занятия	16	16	часов
Самостоятельная работа	76	76	часов
Подготовка и сдача экзамена	36	36	часов
Общая трудоемкость	180	180	часов
(включая промежуточную аттестацию)	5	5	3.e.

	Формы промежуточной аттестация	Семестр
Экзамен		7

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сенченко П.В.

Должность: Проректор по УР Дата подписания: 13.12.2023 Уникальный программный ключ: a1119608-cdff-4455-b54e-5235117c185c

1. Общие положения

1.1. Цели дисциплины

1. Приобретение знаний о физических свойствах материалов нелинейной оптики на основе понятий кристаллофизики.

1.2. Задачи дисциплины

- 1. Получение студентами базовых знаний в области кристаллофизики и симметрии кристаллов.
- 2. Изучение и освоение студентами методов описания и анализа основных физических свойств нелинейно-оптических и электрооптических кристаллов.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль направленности (профиля) (major).

Индекс дисциплины: Б1.В.02.15.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

таолица э.т ко	мпстенции и индикаторы их до	СТИЖСПИЯ				
Компетенция	Индикаторы достижения	Планируемые результаты обучения по				
компетенции		дисциплине				
	Универсальные ко	мпетенции				
-						
	Общепрофессиональны	е компетенции				
-	-	-				
	Профессиональные к	сомпетенции				
ПК-2. Способен	ПК-2.1. Знает принципы	Студент знает принципы работы,				
выполнять	работы, технические	технические характеристики элементов и				
технологическую	характеристики	устройств нелинейной оптики и				
подготовку	оборудования для	нелинейной фотоники				
производства	производства приборов					
элементов и узлов	фотоники и					
фотоники и	оптоинформатики					
оптоинформатики и	ПК-2.2. Умеет осуществлять	Студент умеет осуществлять регламентное				
комплексов на их	регламентное обслуживание	обслуживание элементов и устройств				
основе	оборудования	нелинейной фотоники и оптоинформатики				
	ПК-2.3. Владеет навыками	Студент владеет навыками настройки				
	настройки	элементов и устройств нелинейной				
	высокотехнологичного	фотоники и оптоинформатики				
	оборудования					

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Тиолици ч.т трудосмкость днециплины по видим у теоной деятельное	Всего	Семестры
Виды учебной деятельности	часов	7 семестр
Контактная аудиторная работа обучающихся с преподавателем, всего	68	68
Лекционные занятия	26	26
Практические занятия	26	26
Лабораторные занятия	16	16
Самостоятельная работа обучающихся, в т.ч. контактная	76	76
внеаудиторная работа обучающихся с преподавателем, всего		
Подготовка к тестированию	26	26
Выполнение практического задания	6	6
Подготовка к лабораторной работе, написание отчета	20	20
Написание отчета по лабораторной работе	14	14
Написание отчета по индивидуальному заданию	10	10
Подготовка и сдача экзамена	36	36
Общая трудоемкость (в часах)	180	180
Общая трудоемкость (в з.е.)	5	5

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины	Лек. зан., ч	Прак. зан., ч	Лаб. раб.	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
		7 ce	местр			
1 Введение	2	2	-	4	8	ПК-2
2 Основы кристаллофизики	6	6	4	22	38	ПК-2
3 Симметрия кристаллов	6	8	4	18	36	ПК-2
4 Активные диэлектрики	6	10	4	20	40	ПК-2
5 Кристаллооптика	6	ı	4	12	22	ПК-2
Итого за семестр	26	26	16	76	144	
Итого	26	26	16	76	144	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции				
	7 семестр						
1 Введение	Оптические явления в диэлектриках	2	ПК-2				
	Итого	2					

2 Основы	Диэлектрики. Тензоры второго ранга.	6	ПК-2
кристаллофизики	Преобразования компонент тензоров		
	второго ранга. Определение тензора		
	второго ранга. Характеристическая		
	поверхность второго порядка		
	Итого	6	
3 Симметрия	Операции и элементы симметрии.	6	ПК-2
кристаллов	Точечные группы симметрии.		
	Кристаллографические категории и		
	сингонии. Решетки Браве.		
	Кристаллографические направления и		
	плоскости.		
	Итого	6	
4 Активные	Поляризация диэлектриков.	6	ПК-2
диэлектрики	Сегнетоэлектричество.		
	Пьезоэлектричество. Тензоры третьего		
	ранга. Пироэлектричество.		
	Итого	6	
5 Кристаллооптика	Двойное лучепреломлоние. Вращение	6	ПК-2
_	плоскости поляризации. Нелинейные		
	оптические эффекты		
	Итого	6	
	Итого за семестр	26	
	Итого	26	

5.3. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.3. Таблица 5.3. – Наименование практических занятий (семинаров)

Названия разделов (тем) дисциплины	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	7 семестр		
1 Введение	Линейные и нелинейные оптические материалы	2	ПК-2
	Итого	2	
2 Основы кристаллофизики	Преобразования компонент тензоров второго ранга.	6	ПК-2
	Итого	6	
3 Симметрия кристаллов	Кристаллографические направления и плоскости. Индексы Миллера	4	ПК-2
	Точечные группы симметрии. Кристаллографические категории и сингонии.	4	ПК-2
	Итого	8	
4 Активные	Поляризация диэлектриков.	4	ПК-2
диэлектрики	Сегнетоэлектрики	4	ПК-2
	Пьезоэлектрики	2	ПК-2
	Итого	10	
	Итого за семестр	26	
	Итого	26	

5.4. Лабораторные занятия

Наименование лабораторных работ приведено в таблице 5.4.

Таблица 5.4 – Наименование лабораторных работ

Названия разделов (тем) дисциплины	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	7 семестр		
2 Основы	Исследование оптических свойств	4	ПК-2
кристаллофизики	кристаллов ниобата лития		
	Итого	4	
3 Симметрия кристаллов	Определение симметрии кристалла	4	ПК-2
	при внешних воздействиях		
	Итого	4	
4 Активные	Исследование пироэлектрических	4	ПК-2
диэлектрики	свойств кристаллов		
	4		
5 Кристаллооптика	Отражение световых пучков от	4	ПК-2
	плоской границы раздела «воздух –		
	диэлектрическая среда»		
	4		
	16		
	Итого	16	

5.5. Курсовой проект / курсовая работа

Не предусмотрено учебным планом

5.6. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.6.

Таблица 5.6. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
		7 семестр		
1 Введение	Подготовка к	4	ПК-2	Тестирование
	тестированию			
	Итого	4		
2 Основы	Выполнение	6	ПК-2	Практическое
кристаллофизики	практического задания			задание
	Подготовка к	6	ПК-2	Тестирование
	тестированию			
	Подготовка к	6	ПК-2	Лабораторная работа
	лабораторной работе,			
	написание отчета			
	Написание отчета по	4	ПК-2	Отчет по
	лабораторной работе			лабораторной работе
	Итого	22		

3 Симметрия кристаллов	Подготовка к тестированию	6	ПК-2	Тестирование
	Написание отчета по индивидуальному заданию	6	ПК-2	Отчет по индивидуальному заданию
	Подготовка к лабораторной работе, написание отчета	4	ПК-2	Лабораторная работа
	Написание отчета по лабораторной работе	2	ПК-2	Отчет по лабораторной работе
	Итого	18		
4 Активные диэлектрики	Подготовка к тестированию	6	ПК-2	Тестирование
	Подготовка к лабораторной работе, написание отчета	6	ПК-2	Лабораторная работа
	Написание отчета по лабораторной работе	4	ПК-2	Отчет по лабораторной работе
	Написание отчета по индивидуальному заданию	4	ПК-2	Отчет по индивидуальному заданию
	Итого	20		
5 Кристаллооптика	Подготовка к тестированию	4	ПК-2	Тестирование
	Подготовка к лабораторной работе, написание отчета	4	ПК-2	Лабораторная работа
	Написание отчета по лабораторной работе	4	ПК-2	Отчет по лабораторной работе
	Итого	12		1
	Итого за семестр	76		
	Подготовка и сдача экзамена	36		Экзамен
	Итого	112		

5.7. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.7.

Таблица $\bar{5}.7$ – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Фотитурии	Виды учебной деятельности			ности		
Формируемые компетенции	Лек.	Прак.	Лаб.	Сам.	Формы контроля	
компетенции	зан.	зан.	раб.	раб.		
ПК-2	+	+	+	+	Лабораторная работа, Отчет по	
					индивидуальному заданию, Отчет по	
					лабораторной работе, Практическое	
					задание, Тестирование, Экзамен	

6. Рейтинговая система для оценки успеваемости обучающихся

6.1. Балльные оценки для форм контроля

Балльные оценки для форм контроля представлены в таблице 6.1.

Таблица 6.1 – Балльные оценки

Формы контроля	Максимальный балл на 1-ую КТ с начала семестра	п на 1-ую КТ с балл за период		Всего за семестр
	7 ce	местр		
Отчет по индивидуальному	4	4	4	12
заданию				
Лабораторная работа	0	4	4	8
Практическое задание	6	6	6	18
Тестирование	4	6	6	16
Отчет по лабораторной	0	8	8	16
работе				
Экзамен				30
Итого максимум за период	14	28	28	100
Нарастающим итогом	14	42	70	100

6.2. Пересчет баллов в оценки за текущий контроль

Пересчет баллов в оценки за текущий контроль представлен в таблице 6.2.

Таблица 6.2 – Пересчет баллов в оценки за текущий контроль

Баллы на дату текущего контроля	Оценка
≥ 90% от максимальной суммы баллов на дату ТК	5
От 70% до 89% от максимальной суммы баллов на дату ТК	
От 60% до 69% от максимальной суммы баллов на дату ТК	
< 60% от максимальной суммы баллов на дату ТК	2

6.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 6.3.

Таблица 6.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 – 100	А (отлично)
4 (хорошо) (зачтено)	85 – 89	В (очень хорошо)
	75 – 84	С (хорошо)
	70 – 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 – 69	
	60 – 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

1. Введение в нелинейную оптику: Учебное пособие / С. М. Шандаров - 2012. 41 с. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/2059.

7.2. Дополнительная литература

- 1. Квантовая и оптическая электроника [Электронный ресурс]: учебное пособие / Г. Л. Киселев; рец.: Е. П. Шешин, Н. А. Кульчицкий; худож. Л. А. Арндт. 4-е изд., стер. Электрон. текстовые дан. СПб. : Лань, 2020. [Электронный ресурс]: Режим доступа: https://e.lanbook.com/reader/book/130188/#1.
- 2. Физические основы оптоэлектроники: Учебное пособие / В. Н. Давыдов 2013. 139 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/3716.
- 3. Агравал, Говинд. Применение нелинейной волоконной оптики: учебное пособие / Г. П. Агравал; ред. И. Ю. Денисюк; пер. В. И. Кузин. СПб. : Лань, 2011. 592 с. (наличие в библиотеке ТУСУР 12 экз.).

7.3. Учебно-метолические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Исследование пироэлектрических свойств кристаллов: Методическое пособие к лабораторной работе / В. Н. Давыдов 2011. 28 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/1837.
- 2. Материалы нелинейной и интегральной оптики и динамической голографии: Методические указания по практическим занятиям / М. Г. Кистенева 2018. 8 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/7705.
- 3. Материалы нелинейной и интегральной оптики и динамической голографии: Методические указания по самостоятельной работе / М. Г. Кистенева 2018. 11 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/7796.
- 4. Исследование оптических свойств кристаллов ниобата лития: Методическое пособие к лабораторной работе / В. Н. Давыдов 2011. 21 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/1836.
- 5. Определение симметрии кристалла при внешних воздействиях: Методические указания к лабораторной работе / В. Н. Давыдов 2022. 14 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/10103.
- 6. Отражение световых пучков от плоской границы раздела «воздух диэлектрическая среда»: Методические указания к лабораторной работе для студентов направлений подготовки «Фотоника и оптоинформатика» и «Электроника и наноэлектроника» / С. М. Шандаров, Н. И. Буримов 2013. 19 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/3494.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

- 1. При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.
 - 8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

8.2. Материально-техническое и программное обеспечение для практических занятий

Учебная лаборатория: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 110 ауд.

Описание имеющегося оборудования:

- Лабораторные стенды (6 шт.);
- Измерительные приборы;
- Доска магнитно-маркерная;
- Оптическая скамья ОСК-4;
- Помещение для хранения учебного оборудования;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.3. Материально-техническое и программное обеспечение для лабораторных работ

Учебная лаборатория: учебная аудитория для проведения занятий лабораторного типа; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 111 ауд.

Описание имеющегося оборудования:

- Учебный стенд "Оптика" 2 шт.;
- Генератор АКИП-3409/3 2 шт.;
- Источник питания "Марс";
- Генератор Г5-54;
- Генератор функциональный АКТАКОМ АНР-3121;
- Мультиметр: DT 0205A, S-Line DT-830B;
- Осциллограф: Tektronix TBS2000, Rigol;
- Мультиметр Mastech MY68:
- Лабораторные стенды "Электрооптический эффект" 2 шт., "Фазовый портрет" 2 шт.;
- Лабораторный стенд "Полупроводниковые фотоприемники";
- Лабораторный стенд "Полупроводниковый лазер";
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;

- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.5. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с **нарушениями зрения** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с **нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
1 Введение	ПК-2	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
2 Основы кристаллофизики	ПК-2	Лабораторная работа	Темы лабораторных работ
		Практическое задание	Темы практических заданий
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ

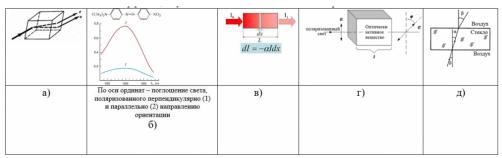
3 Симметрия кристаллов	ПК-2	Отчет по индивидуальному заданию Лабораторная работа	Примерный перечень вариантов индивидуальных заданий Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ
4 Активные диэлектрики	ПК-2	Отчет по индивидуальному заданию	Примерный перечень вариантов индивидуальных заданий
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ
5 Кристаллооптика	ПК-2	Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ

Шкала оценки сформированности отдельных планируемых результатов обучения по

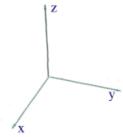
дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по дисциплине

		Формулировка требований к степени сформированности		
Оценка	Баллы за ОМ	планируемых результатов обучения		учения
		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков


3	от 60% до	общие, но не	в целом успешно,	в целом
	69% от	ĺ		·
(удовлетворительно)		структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков
4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% ot	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций


,	ала комплексной оценки сформированности компетенции
Оценка	Формулировка требований к степени компетенции
2	Не имеет необходимых представлений о проверяемом материале
(неудовлетворительно)	или
	Знать на уровне ориентирования, представлений. Обучающийся знает
	основные признаки или термины изучаемого элемента содержания, их
	отнесенность к определенной науке, отрасли или объектам, узнает в
	текстах, изображениях или схемах и знает, к каким источникам нужно
	обращаться для более детального его усвоения.
3	Знать и уметь на репродуктивном уровне. Обучающихся знает
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях.
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на
	репродуктивном уровне, указывать на особенности и взаимосвязи
	изученных объектов, на их достоинства, ограничения, историю и
	перспективы развития и особенности для разных объектов усвоения.
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает
	изученный элемент содержания системно, произвольно и доказательно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях, учитывая и указывая связи и зависимости между этим
	элементом и другими элементами содержания дисциплины, его
	значимость в содержании дисциплины.

9.1.1. Примерный перечень тестовых заданий

- 1. К оптическим эффектам, зависящим от интенсивности света, относятся (отметьте верные варианты)
 - 1) рефракция
 - 2) фотохромный эффект
 - 3) люминесценция
 - 4) электрооптический эффект
 - 5) фотовольтаический эффект
 - 6) пьезооптический эффект
- 2. Отметьте и назовите эффекты, обусловленным естественной анизотропией

- 3. Какие из перечисленных эффектов относятся к эффектам, индуцированным внешними полями (отметьте верные варианты)
 - 1) электрооптический эффект
 - 2) магнитооптический эффект
 - 3) поляризация света
 - 4) пьезооптический эффект
 - 5) люминесценция
 - 6) фотовольтаический эффект
- 4. Характеристическая поверхность второго порядка (отметьте верные варианты)
 - 1) используется для описания свойств нелинейных кристаллов
 - 2) определяется коэффициентами, которые преобразуются так же, как компоненты симметричного тензора второго ранга
 - 3) определяется коэффициентами, которые не зависят от выбора системы координат
 - 4) используется для описания свойств кристаллов, представляемых симметричным тензором второго порядка
- 5. Оптическая индикатриса (отметьте верные варианты)
 - 1) это эллипсоид, показывающий зависимость показателя преломления в кристалле от длины волны света
 - 2) это эллипсоид, показывающий зависимость показателя преломления в кристалле от направления волновой нормали
 - 3) это эллипсоид, показывающий зависимость показателя преломления в кристалле от напряженности поля
- 6. Изобразите кристаллографические плоскости, параллельные оси Ох, и напишите их индексы

- 7. Точечная группы кристалла (отметьте верные варианты)
 - 1) описывает атомную структуру кристалла
 - 2) есть группа макроскопических элементов симметрии, которыми обладает структура кристалла
 - 3) это минимальный объём кристалла, параллельные переносы которого в трёх измерениях позволяют построить всю кристаллическую решётку
 - 4) это группа узлов пространственной решетки, образующих элементарную ячейку
- 8. Какие из кристаллографических плоскостей пересекают ось Oz?
 - (100)
 - (001)
 - (010)
 - (111)
 - (101)
 - (021)
 - (210)
 - (043)
- 9. Принцип Неймана формулируется следующим образом (отметьте верные варианты):

- 1) элементы симметрии любого физического свойства полностью совпадают с элементами симметрии точечной группы кристалла
- 2) элементы симметрии любого физического свойства должны включать элементы симметрии точечной группы кристалла
- 3) симметрия физического свойства может быть ниже симметрии точечной группы кристалла
- 4) симметрия физического свойства не может быть выше симметрии точечной группы кристалла
- 10. К какому типу относится кристалличеякая решетка?

- 11. Оптическая ось кристалла это (отметьте верные варианты)
 - 1) такое направление в кристалле, по которому световые волны распространяются без двойного лучепреломления
 - 2) такое направление в кристалле, при распространении света, вдоль которого наблюдается двойное лучепреломление
 - 3) такое направление, вдоль которого распространяется только обыкновенная волна
 - 4) такое направление, вдоль которого скорость световых волн не зависит от ориентации колебаний светового вектора вокруг луча
- 12. При обратном пьезоэлектрическом эффекте деформация диэлектрика (отметьте верные варианты)
 - 1) зависит от напряженности поля по квадратичному закону
 - 2) не зависит от направления напряженности электрического поля
 - 3) линейно зависит от напряженности электрического поля
 - 4) линейно зависит от приложенного механического напряжения
- 13. Квадратичный электрооптический эффект (отметьте верные варианты)
 - 1) обусловлен изменением показателя преломления под действием электрического поля, квадратично зависящим от частоты электрического поля
 - 2) обусловлен изменением показателя преломления под действием электрического поля, квадратично зависящим от напряженности поля
 - 3) обусловлен изменением показателя преломления под действием механического напряжения, квадратично зависящим от механического напряжения
- 14. Фотоупругость (отметьте верные варианты)
 - 1) изменение показателя преломления твёрдых тел под действием электрического поля
 - 2) изменение коэффициента поглощения твёрдых тел под действием механических напряжений
 - 3) изменение показателя преломления твёрдых тел под действием механических напряжений
 - 4) возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных кристаллах при воздействии электрического поля
 - 5) возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных кристаллах при их деформации
- 15. Метаматериалы это материалы, у которых (отметьте верные варианты)
 - 1) отрицательное значение диэлектрической проницаемости
 - 2) отрицательное значение магнитной проницаемости
 - 3) отрицательное значение диэлектрической проницаемости и магнитной проницаемости
 - 4) отрицательное значение показателя преломления

9.1.2. Перечень экзаменационных вопросов

- 1. Классификация нелинейных оптических материалов.
- 2. Классификация нелинейно-оптических эффектов.
- 3. Линейные и нелинейные оптические материалы.
- 4. Принципы отбора веществ, перспективных для применения в нелинейной оптике.
- 5. Оптические эффекты, обусловленным естественной анизотропией.

- 6. Оптические эффекты, обусловленным анизотропией, индуцированной полями.
- 7. Оптические эффекты, зависящие от интенсивности света.
- 8. Дихроизм, гирация, двулучепреломление (естественное, искусственное).
- 9. Фоторефрактивный эффект.
- 10. Определение тензоры второго ранга. Преобразования компонент тензоров второго ранга.
- 11. Связь между векторами Р и Е, D и Е для изотропных и анизотропных сред.
- 12. Характеристическая поверхность второго порядка.
- 13. Оптическая индикатрисса.
- 14. Принцип Неймана.
- 15. Операции и элементы симметрии. Оси симметрии, плоскости симметрии, трансляции.
- 16. Точечные группы симметрии.
- 17. Кристаллографические категории и сингонии.
- 18. Решетки Браве.
- 19. Кристаллографические направления и плоскости.
- 20. Электрооптический эффект. Первичные и вторичный электрооптический эффект.
- 21. Прямой и обратный пьезоэлектрический эффект.
- 22. Пьезоэлектрические модули. Описание с помощью тензора третьего ранга.
- 23. Уменьшение числа независимых модулей. Матричные обозначения.
- 24. Влияние симметрии кристаллов на оптические эффекты.
- 25. Материалы с отрицательным показателем преломления. Метаматериалы.

9.1.3. Темы лабораторных работ

- 1. Исследование оптических свойств кристаллов ниобата лития
- 2. Определение симметрии кристалла при внешних воздействиях
- 3. Исследование пироэлектрических свойств кристаллов
- 4. Отражение световых пучков от плоской границы раздела «воздух диэлектрическая среда»

9.1.4. Темы практических заданий

- 1. Линейные и нелинейные оптические материалы.
- 2. Преобразования компонент тензоров второго ранга.
- 3. Кристаллографические направления и плоскости. Индексы Миллера.
- 4. Точечные группы симметрии. Кристаллографические категории и сингонии.
- 5. Поляризация диэлектриков.
- 6. Сегнетоэлектрики.
- 7. Пьезоэлектрики.

9.1.5. Примерный перечень вариантов индивидуальных заданий

- 1. Примеры вариантов заданий по теме "Линейные и нелинейные оптические материалы"
 - 1) Естественный свет проходит через поляризатор и анализатор, угол между главными плоскостями которых равен α. Поляризатор и анализатор как поглощают, так и отражают 10% падающего на них света. Определите угол α, если интенсивность света, вышедшего из анализатора, равна 12% интенсивности света, падающего на поляризатор.
 - 2) Естественный свет интенсивностью I0 проходит через поляризатор и анализатор, угол между главными плоскостями которых составляет α. После прохождения света через эту систему он падает на зеркало и, отразившись, проходит вновь через нее. Пренебрегая поглощением света, определите интенсивность I света после его обратного прохождения.
 - 3) Параллельный пучок света падает нормально на пластинку из исландского шпата толщиной 50 мкм, вырезанную параллельно оптической оси. Принимая показатели преломления исландского шпата для обыкновенного и необыкновенного лучей соответственно n0 = 1,66 и ne = 1,49, определите разность хода этих лучей, прошедших через пластинку.
 - 4) Плоскополяризованный свет, длина волны которого в вакууме $\lambda = 530$ нм, падает на пластинку из кварца перпендикулярно ее оптической оси. Определите показатели преломления кварца для обыкновенного (n0) и необыкновенного (ne) лучей, если длины волн этих лучей в кристалле соответственно равны $\lambda 0 = 344$ нм и $\lambda e = 341$ нм.

- 5) Раствор глюкозы с массовой концентрацией C1 = 0.21 г/см3, находящийся в стеклянной трубке, поворачивает плоскость поляризации монохроматического света, проходящего через раствор, на угол $\phi 1 = 24^{\circ}$. Определите массовую концентрацию C2 глюкозы в другом растворе в трубке такой же длины, если он поворачивает плоскость поляризации на угол $\phi 2 = 18^{\circ}$.
- 2. Примеры вариантов заданий по теме "Преобразования компонен тензора второго ранга"

Задание: Докажите, что тензор диэлектрической проницаемости симметричен. Считать, что поглощение отсутствует, магнитное поле однородно и изотропно.

Решение:

В качестве основы для доказательства используем выражения для плотности энергии электрического (w_e) и магнитного полей (w_m):

$$\begin{split} w_e &= \frac{\varepsilon_0}{2} \varepsilon_{ij} E_i E_j \left(1.1 \right). \\ w_m &= \frac{\mu_0}{2} \mu_{ij} H_i H_j = \frac{\mu_0}{2} \mu H^2 \left(1.2 \right). \end{split}$$

где H_iH_j - компоненты вектора напряжённости магнитного поля.

Выражение для вектора Умова -- Пойнтинга ($\overset{
ightarrow}{S}$):

$$\overrightarrow{S} = \left[\overrightarrow{E} \times \overrightarrow{H}\right] (1.3) \, .$$

Первое и второе уравнения из системы уравнений Максвелла:

$$rot\overrightarrow{E}=-rac{\partial\overrightarrow{B}}{\partial t}\,\,\,(1.4)\,,$$

$$rot\overrightarrow{H} = \overrightarrow{j} + \frac{\partial \overrightarrow{D}}{\partial t} \ (1.5) \, ,$$

Уравнение (1.5) системы умножим на вектор напряженности электрического поля (\overrightarrow{E}) , уравнение (1.4) умножим на вектор напряженности магнитного поля (\overrightarrow{H}) , сложим два полученных выражения при этом опустим ток проводимости, получим:

$$\overrightarrow{E}\,rot\overrightarrow{H}-\overrightarrow{H}\,rot\overrightarrow{E}=\overrightarrow{j}\cdot\overrightarrow{E}+\overrightarrow{E}\cdot\frac{\partial\overrightarrow{D}}{\partial t}+\overrightarrow{H}\cdot\frac{\partial\overrightarrow{B}}{\partial t}\;(1.6)$$

$$-div\overrightarrow{S} = -div\left[\overrightarrow{E}\times\overrightarrow{H}\right] = \overrightarrow{E}\cdot\overrightarrow{D} + \overrightarrow{B}\cdot\overrightarrow{H} = \varepsilon_{0}E_{i}\varepsilon_{ij}\dot{E}_{j} + \frac{1}{2}\mu_{0}\frac{d}{dt}\left(\mu H^{2}\right)\left(1.7\right),$$

где \overrightarrow{B} -- вектор магнитной индукции. При преобразовании дивергенции векторного произведения мы использовали известное векторное равенство:

$$div\left[\overrightarrow{E}\times\overrightarrow{H}\right] = \overrightarrow{H}rot\overrightarrow{E} - \overrightarrow{E}rot\overrightarrow{H} \ (1.8) \, .$$

Исходя из уравнения (1.2) мы получили, что в уравнении (1.7) вторым слагаемым является:

$$\frac{1}{2}\mu_0\frac{d}{dt}(\mu H^2) = \frac{d}{dt}(w_m)(1.9).$$

Так как мы условились, что среда является однородной и изотропной для магнитного поля, то такая производная равна нулю. Изучим производную по времени от плотности энергии электрического поля:

$$\frac{d}{dt}w_e = \frac{\varepsilon_0}{2} \frac{d}{dt} (\varepsilon_{ij} E_i E_j) = \frac{\varepsilon_0}{2} \varepsilon_{ij} \left(\dot{E}_i E_j + E_i \dot{E}_j \right) (1.10).$$

Выражение $arepsilon_0 \sum_{i,j} E_i arepsilon_{ij} \dot{E}_j$ будет представлять собой скорость изменения плотности энергии электрического поля

только если:

только если

$$\varepsilon_0 E_i \varepsilon_{ij} \dot{E}_j = \frac{d}{dt} w_e = \frac{\varepsilon_0}{2} \varepsilon_{ij} \left(\dot{E}_i E_j + E_i \dot{E}_j \right) (1.11),$$

то есть при

$$\varepsilon_{ij} \left(\dot{E}_i E_j - E_i \dot{E}_j \right) = 0 \ (1.12).$$

Мы понимаем, что изменение индексов в выражении (1.12) фиктивно, так как они принимают одни и те же значения (x,y,z). Из уравнения (1.12) следует, что:

$$\varepsilon_{ij} = \varepsilon_{ji}$$
.

Что требовалось доказать.

Задание: Покажите, используя тензор диэлектрической проницаемости, что векторы \overrightarrow{D} и \overrightarrow{E} не коллинеарны в неизотопном кристалле.

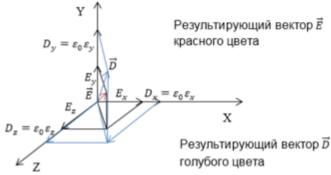
Решение:

Анизотропная среда характеризуется тензором диэлектрической проницаемости второго ранга:

$$arepsilon_{ij} = egin{array}{cccc} arepsilon_{xx} & arepsilon_{xy} & arepsilon_{xz} \ arepsilon_{yx} & arepsilon_{yy} & arepsilon_{yz} \ arepsilon_{zx} & arepsilon_{zy} & arepsilon_{zz} \ \end{array} (2.1) \, .$$

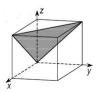
Это означает, что каждая составляющая вектора \overrightarrow{D} выражается через все три составляющие вектора напряженности электрического поля:

$$\begin{cases} D_x = \varepsilon_0 \left(\varepsilon_{xx} E_x + \varepsilon_{xy} E_y + \varepsilon_{xz} E_z \right), \\ D_y = \varepsilon_0 \left(\varepsilon_{yx} E_x + \varepsilon_{yy} E_y + \varepsilon_{yz} E_z \right), \\ D_z = \varepsilon_0 \left(\varepsilon_{zx} E_x + \varepsilon_{zy} E_y + \varepsilon_{zz} E_z \right). \end{cases}$$

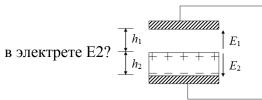

Выберем главные оси Х,Ү,Z и зафиксируем их по отношению к кристаллу. В таком случаем можно записать:

$$\begin{cases} D_x = \varepsilon_0 \varepsilon_x E_x, \\ D_y = \varepsilon_0 \varepsilon_y E_y, \\ D_z = \varepsilon_0 \varepsilon_z E_z. \end{cases}$$
 (2.3).

Система (2.3) означает, что тензор диэлектрической проницаемости приведен к виду:


$$arepsilon_{ij} = egin{array}{ccc} arepsilon_x & 0 & 0 \ 0 & arepsilon_y & 0 \ 0 & 0 & arepsilon_z \ \end{array} egin{array}{ccc} (2.2) \end{array}$$

С точки зрения математики — это диагонализация матрицы (2.1). Если $\varepsilon_x \neq \varepsilon_y \neq \varepsilon_z$, то при умножении составляющих вектора \overrightarrow{E} на соответствующие компоненты тензора диэлектрической проницаемости, то компоненты вектора электрического смещения (2.3) не совпадут по направлению с вектором \overrightarrow{E} . (рис.1).


3. Примеры заданий по теме "Кристаллографические направления и плоскости. Индексы Миллера"

1. Обозначить индексы плоскости

- 2. Найдите индексы плоскости, отсекающей на координатных осях отрезки: -3; 1/2; -1.
- 3. Изобразите плоскость с индексами (013).
- 4. Примеры заданий по теме" Поляризация диэлектриков"
 - 1) К пластинам плоского конденсатора, расстояние между которыми равно d = 3 см, подана разность потенциалов U = 1000 В. Пространство между пластинами заполняется диэлектриком (e = 7). Найти поверхностную плотность связанных зарядов на пластинах конденсатора и на диэлектрике, если заполнение конденсатора диэлектриком производится при включенном источнике разности потенциалов.
 - 2) В полярном диэлектрике в поле напряженностью $E = 4 \times 10^8$ В×м $^-1$ полярные молекулы приобретают электрический момент 1,8 Д, их концентрация равна 5×10^2 1 см $^-3$. Найдите диэлектрическую восприимчивость этого диэлектрика.
 - 3) Расстояние между электродами плоского вакуумного конденсатора равно 4 мм. Во сколько раз увеличится емкость конденсатора, если пространство между электродами заполнить диэлектриком, у которого при напряженности электрического поля $E = 10^5$ В/м поляризованность равна $P = 3,1 \times 10^-6$ Кл/м 2 ?
 - 4) В объеме диэлектрика V = 5 см3 возникает электрический момент, равный 3×10 -7 Кл \times м, под действием электрического поля E = 106 В \times м-1. Дипольный момент полярной молекулы в диэлектрике равен 2,8 Д. Определите концентрацию диполей в этом диэлектрике?
- 5. Примеры заданий по теме"Сегнетоэлектрики"
 - 1) На рисунке представлен график зависимости поляризованности P сегнетокерамики от напряженности электрического поля E и даны касательные к различным точкам кривой P(E). Чему равна напряженность поля, при которой диэлектрическая проницаемость

2) У пластинки электрета поверхностная плотность связанных зарядов равна $4,42 \times 10$ -6 Кл/м2, диэлектрическая проницаемость e=3. Толщина пластинки 1 мм. Пластинка помещена между обкладками конденсатора, расположенными на расстоянии 1,5 мм и имеющими площадь 5 см2 (см. рисунок). Чему равна напряженность электрического поля

- 3) Поляризация сегнетоэлектрика осуществляется по предельной петле гистерезиса. Во сколько раз увеличатся потери в сегнетоэлектрике при увеличении амплитуды напряженности поля в 2 раза?
- 4) Для удлиненного пьезоэлектрического кристалла, имеющего длину L, используемого для стабилизации частоты на первой гармонике, выразите температурный коэффициент резонансной частоты (ТКf) через температурный коэффициент линейного расширения ТКL и температурный коэффициент изменения модуля упругости ТКЕу.

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление

студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

возможностями здоровья и инвалидов				
Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки		
категории обучающихся	материалов	результатов обучения		
С нарушениями слуха	Тесты, письменные	Преимущественно письменная		
	самостоятельные работы, вопросы	проверка		
	к зачету, контрольные работы			
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная		
	зачету, опрос по терминам	проверка (индивидуально)		
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно		
двигательного аппарата	контрольные работы, письменные	дистанционными методами		
	самостоятельные работы, вопросы			
	к зачету			
С ограничениями по	Тесты, письменные	Преимущественно проверка		
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися		
показаниям	к зачету, контрольные работы, исходя из состояни			
	устные ответы	обучающегося на момент		
		проверки		

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;

- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ЭП протокол № 11 от «24 » 11 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ЭП	Н.И. Буримов	Согласовано, 393931b1-af66-45e5- a537-c5831244e4ca
Заведующий обеспечивающей каф. ЭП	Н.И. Буримов	Согласовано, 393931b1-af66-45e5- a537-c5831244e4ca
Начальник учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Доцент, каф. ЭП	А.И. Аксенов	Согласовано, d90d5f87-f1a9-4440- b971-ce4f7e994961
Профессор, каф. ЭП	Л.Н. Орликов	Согласовано, 8afa57b7-3fcf-44bc- 922a-3c3f168876e6
РАЗРАБОТАНО:		
Доцент, каф. ЭП	М.Г. Кистенева	Разработано, e19f1610-4e07-4ea6- 9fe8-7e79055714f0