### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

#### Федеральное государственное бюджетное образовательное учреждение высшего образования

# «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

| У    | ТВЕРЖД | ΑЮ         |
|------|--------|------------|
|      | Проре  | ктор по УР |
|      | Сен    | ченко П.В. |
| «13» | 12     | 2023 г.    |

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

#### МАГНИТНЫЕ ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.04 Электроника и наноэлектроника

Направленность (профиль) / специализация: Промышленная электроника

Форма обучения: заочная

Кафедра: промышленной электроники (ПрЭ)

Курс: **3** Семестр: **5, 6** 

Учебный план набора 2024 года

#### Объем дисциплины и виды учебной деятельности

| Виды учебной деятельности              | 5 семестр | 6 семестр | Всего | Единицы |
|----------------------------------------|-----------|-----------|-------|---------|
| Лекционные занятия                     | 6         |           | 6     | часов   |
| Практические занятия                   | 2         | 4         | 6     | часов   |
| в т.ч. в форме практической подготовки | 2         | 4         | 6     | часов   |
| Самостоятельная работа                 | 64        | 28        | 92    | часов   |
| Подготовка и сдача зачета              |           | 4         | 4     | часов   |
| Общая трудоемкость                     | 72        | 36        | 108   | часов   |
| (включая промежуточную аттестацию)     |           |           | 3     | 3.e.    |

| Формы промежуточной аттестации | Семестр |
|--------------------------------|---------|
| Зачет                          | 6       |

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сенченко П.В.

Должность: Проректор по УР Дата подписания: 13.12.2023 Уникальный программный ключ: a1119608-cdff-4455-b54e-5235117c185c

#### 1. Общие положения

#### 1.1. Цели дисциплины

1. Получение знаний в области устройства и принципа действия магнитных элементов электронных устройств (МЭЭУ) различного функционального назначения, применения МЭЭУ в устройствах энергетической электроники и преобразовательной техники, приобретение умений и навыков проектирования трансформаторов и дросселей.

#### 1.2. Задачи дисциплины

- 1. Изучение кассификации, устройства и принципа действия МЭЭУ, их функционального назначения, условных графических обозначений на схемах электрических принципиальных.
- 2. Изучение основных расчетных соотношений для геометрических показателей и физических величине МЭЭУ.
- 3. Получение навыков проектирования трансформаторов и дросселей и навыков использования компьютерных технологий математических расчетов в системе Mathcad.

#### 2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль направленности (профиля) (major).

Индекс дисциплины: Б1.В.01.03.02.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

### 3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

| Таблица 3.1 – Компетенции и индикаторы их достижения |                           |                                       |  |  |  |  |
|------------------------------------------------------|---------------------------|---------------------------------------|--|--|--|--|
| Компетенция                                          | Индикаторы достижения     | Планируемые результаты обучения по    |  |  |  |  |
| Компетенция                                          | компетенции               | дисциплине                            |  |  |  |  |
| Универсальные компетенции                            |                           |                                       |  |  |  |  |
| -                                                    | -                         | -                                     |  |  |  |  |
|                                                      | Общепрофессиональны       | е компетенции                         |  |  |  |  |
| -                                                    | -                         | -                                     |  |  |  |  |
|                                                      | Профессиональные к        | омпетенции                            |  |  |  |  |
| ПК-3. Способен                                       | ПК-3.1. Знает принципы    | Знает принципы конструирования МЭЭУ   |  |  |  |  |
| выполнять расчет и                                   | конструирования отдельных |                                       |  |  |  |  |
| проектирование                                       | аналоговых блоков         |                                       |  |  |  |  |
| электронных приборов,                                | электронных приборов      |                                       |  |  |  |  |
| схем и устройств                                     | ПК-3.2. Умеет проводить   | Умеет проводить расчеты характеристик |  |  |  |  |
| различного                                           | оценочные расчеты         | МЭЭУ                                  |  |  |  |  |
| функционального                                      | характеристик электронных |                                       |  |  |  |  |
| назначения в                                         | приборов                  |                                       |  |  |  |  |
| соответствии с                                       | ПК-3.3. Владеет навыками  | Владеет навыками подготовки           |  |  |  |  |
| техническим заданием                                 | подготовки                | принципиальных электрических схем, в  |  |  |  |  |
| с использованием                                     | принципиальных и          | которых применяются МЭЭУ              |  |  |  |  |
| средств автоматизации                                | монтажных электрических   |                                       |  |  |  |  |
| проектирования                                       | схем                      |                                       |  |  |  |  |

# 4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

| Виды учебной деятельности                                |     | Семестры  |           |
|----------------------------------------------------------|-----|-----------|-----------|
|                                                          |     | 5 семестр | 6 семестр |
| Контактная аудиторная работа обучающихся с               | 12  | 8         | 4         |
| преподавателем, всего                                    |     |           |           |
| Лекционные занятия                                       | 6   | 6         |           |
| Практические занятия                                     | 6   | 2         | 4         |
| Самостоятельная работа обучающихся, в т.ч. контактная    | 92  | 64        | 28        |
| внеаудиторная работа обучающихся с преподавателем, всего |     |           |           |
| Подготовка к контрольной работе                          | 16  | 10        | 6         |
| Подготовка к тестированию                                | 26  | 18        | 8         |
| Выполнение индивидуального задания                       | 36  | 36        |           |
| Подготовка к зачету                                      | 14  |           | 14        |
| Подготовка и сдача зачета                                | 4   |           | 4         |
| Общая трудоемкость (в часах)                             | 108 | 72        | 36        |
| Общая трудоемкость (в з.е.)                              | 3   | 2         | 1         |

#### 5. Структура и содержание дисциплины

#### 5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

| Названия разделов (тем) дисциплины     |        | Прак.<br>зан., ч | Сам.<br>раб., ч | Всего<br>часов (без<br>зачета) | Формируемые<br>компетенции |
|----------------------------------------|--------|------------------|-----------------|--------------------------------|----------------------------|
|                                        | 5 семе | стр              |                 |                                |                            |
| 1 Конструктивное исполнение МЭЭУ       | 1      | -                | 8               | 9                              | ПК-3                       |
| 2 Геометрические параметры МЭЭУ        | 1      | -                | 6               | 7                              | ПК-3                       |
| 3 Электротехнические законы МЭЭУ       | 1      | -                | 4               | 5                              | ПК-3                       |
| 4 Физические величины МЭЭУ,            | 1      | -                | 20              | 21                             | ПК-3                       |
| связанные с параметрами магнитопровода |        |                  |                 |                                |                            |
| 5 Трансформаторы                       | 2      | 2                | 26              | 30                             | ПК-3                       |
| Итого за семестр                       | 6      | 2                | 64              | 72                             |                            |
| 6 семестр                              |        |                  |                 |                                |                            |
| 6 Дроссели электромагнитные            | -      | -                | 8               | 8                              | ПК-3                       |
| 7 Дроссели насыщения и магнитные       |        | 4                | 8               | 12                             | ПК-3                       |
| усилители                              |        |                  |                 |                                |                            |
| 8 Умножители и делители частоты        | -      | -                | 12              | 12                             | ПК-3                       |
| Итого за семестр                       | 0      | 4                | 28              | 32                             |                            |
| Итого                                  | 6      | 6                | 92              | 104                            |                            |

#### 5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2. Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

| Названия разделов (тем)<br>дисциплины                              | Трудоемкость (лекционные занятия), ч                                                                                                                      | Формируемые<br>компетенции |          |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|
|                                                                    | 5 семестр                                                                                                                                                 | 94111111), 1               | <u> </u> |
| 1 Конструктивное исполнение МЭЭУ                                   | Классификация МЭЭУ по конструктивному исполнению. Основные технические показатели ферромагнитных и обмоточных материалов. Конструкции магнитных элементов | 1                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | 1                          |          |
| 2 Геометрические параметры МЭЭУ                                    | Основные расчетные соотношения для геометрических показателей МЭЭУ                                                                                        | 1                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | 1                          |          |
| 3 Электротехнические законы МЭЭУ                                   | Законы, лежащие в основе принципа действия и методик проектирования МЭЭУ - закон электромагнитной индукции, закон полного тока, закон намагничивания      | 1                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | 1                          |          |
| 4 Физические величины МЭЭУ, связанные с параметрами магнитопровода | Вывод расчетных соотношений для действующего значения питающего напряжения, тока, габаритной мощности                                                     | 1                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | 1                          |          |
| 5 Трансформаторы                                                   | Классификация, условные графические обозначения, основные расчетные соотношения, методика проектирования                                                  | 2                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | 2                          |          |
|                                                                    | Итого за семестр                                                                                                                                          | 6                          |          |
|                                                                    | 6 семестр                                                                                                                                                 |                            |          |
| 6 Дроссели<br>электромагнитные                                     | Классификация, условные графические обозначения, основные расчетные соотношения, методика проектирования                                                  | -                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | -                          |          |
| 7 Дроссели насыщения и магнитные усилители                         | Классификация, условные графические обозначения, основные расчетные соотношения, эксплуатационные характеристики                                          | -                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | -                          |          |
| 8 Умножители и делители частоты                                    | Принцип действия, условные графические обозначения, основные расчетные соотношения, эксплуатационные характеристики                                       | -                          | ПК-3     |
|                                                                    | Итого                                                                                                                                                     | -                          |          |
|                                                                    | Итого за семестр                                                                                                                                          | -                          |          |

| Итог | 6 |  |
|------|---|--|
|------|---|--|

#### 5.3. Контрольные работы

Не предусмотрено учебным планом

#### 5.4. Лабораторные занятия

Не предусмотрено учебным планом

#### 5.5. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.5.

Таблица 5.5. – Наименование практических занятий (семинаров)

| Названия разделов (тем) дисциплины | Наименование практических<br>занятий (семинаров)                                       | Трудоемкость, ч | Формируемые компетенции |
|------------------------------------|----------------------------------------------------------------------------------------|-----------------|-------------------------|
|                                    | 5 семестр                                                                              |                 |                         |
| 5 Трансформаторы                   | Основы проектирования трансформаторов. Кон-сультация по ИЗ1                            | 2               | ПК-3                    |
|                                    | Итого                                                                                  | 2               |                         |
|                                    | Итого за семестр                                                                       | 2               |                         |
|                                    | 6 семестр                                                                              |                 |                         |
| 7 Дроссели насыщения и             | Защита ИЗ                                                                              | 2               | ПК-3                    |
| магнитные усилители                | Консруктивное исполнение и принцип действия дросселей насыщения и магнитных усилителей | 2               | ПК-3                    |
|                                    | Итого                                                                                  | 4               |                         |
|                                    | 4                                                                                      |                 |                         |
|                                    | 6                                                                                      |                 |                         |

#### 5.6. Курсовой проект / курсовая работа

Не предусмотрено учебным планом

#### 5.7. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.7.

Таблица 5.7. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

| Названия разделов (тем) дисциплины | Виды самостоятельной работы     | Трудоемкость, | Формируемые компетенции | Формы контроля        |
|------------------------------------|---------------------------------|---------------|-------------------------|-----------------------|
|                                    | 5                               | семестр       |                         |                       |
| 1 Конструктивное исполнение МЭЭУ   | Подготовка к контрольной работе | 4             | ПК-3                    | Контрольная<br>работа |
|                                    | Подготовка к тестированию       | 4             | ПК-3                    | Тестирование          |
|                                    | Итого                           | 8             |                         |                       |
| 2 Геометрические параметры МЭЭУ    | Подготовка к контрольной работе | 2             | ПК-3                    | Контрольная<br>работа |
|                                    | Подготовка к тестированию       | 4             | ПК-3                    | Тестирование          |
|                                    | Итого                           | 6             |                         |                       |

| 3 Электротехнические | Подготовка к        | 4      | ПК-3 | Тестирование   |
|----------------------|---------------------|--------|------|----------------|
| законы МЭЭУ          | тестированию        |        |      |                |
|                      | Итого               | 4      |      | 1              |
| 4 Физические         | Выполнение          | 16     | ПК-3 | Индивидуальное |
| величины МЭЭУ,       | индивидуального     |        |      | задание        |
| связанные с          | задания             |        |      |                |
| параметрами          | Подготовка к        | 2      | ПК-3 | Контрольная    |
| магнитопровода       | контрольной работе  |        |      | работа         |
|                      | Подготовка к        | 2      | ПК-3 | Тестирование   |
|                      | тестированию        |        |      |                |
|                      | Итого               | 20     |      |                |
| 5 Трансформаторы     | Выполнение          | 20     | ПК-3 | Индивидуальное |
|                      | индивидуального     |        |      | задание        |
|                      | задания             |        |      |                |
|                      | Подготовка к        | 2      | ПК-3 | Контрольная    |
|                      | контрольной работе  |        |      | работа         |
|                      | Подготовка к        | 4      | ПК-3 | Тестирование   |
|                      | тестированию        |        |      |                |
|                      | Итого               | 26     |      |                |
|                      | Итого за семестр    | 64     |      |                |
|                      | 6 c                 | еместр |      |                |
| 6 Дроссели           | Подготовка к зачету | 4      | ПК-3 | Зачёт          |
| электромагнитные     | Подготовка к        | 2      | ПК-3 | Контрольная    |
|                      | контрольной работе  |        |      | работа         |
|                      | Подготовка к        | 2      | ПК-3 | Тестирование   |
|                      | тестированию        |        |      |                |
|                      | Итого               | 8      |      |                |
| 7 Дроссели           | Подготовка к зачету | 4      | ПК-3 | Зачёт          |
| насыщения и          | Подготовка к        | 2      | ПК-3 | Контрольная    |
| магнитные усилители  | контрольной работе  |        |      | работа         |
|                      | Подготовка к        | 2      | ПК-3 | Тестирование   |
|                      | тестированию        |        |      | 1              |
|                      | Итого               | 8      |      | -              |
| 8 Умножители и       | Подготовка к зачету | 6      | ПК-3 | Зачёт          |
| делители частоты     | Подготовка к        | 2      | ПК-3 | Контрольная    |
|                      | контрольной работе  | _      |      | работа         |
|                      | Подготовка к        | 4      | ПК-3 | Тестирование   |
|                      | тестированию        |        |      | Trans.         |
|                      | Итого               | 12     |      |                |
|                      | Итого за семестр    | 28     |      |                |
|                      | Подготовка и сдача  | 4      |      | Зачет          |
|                      |                     | 7      |      | Janei          |
|                      | зачета              |        |      |                |

## **5.8.** Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.8.

Таблица 5.8 – Соответствие компетенций, формируемых при изучении дисциплины, и видов

#### занятий

| Формируемые | Виды уч   | ебной деят | ельности  | Формулионтома                    |
|-------------|-----------|------------|-----------|----------------------------------|
| компетенции | Лек. зан. | Прак. зан. | Сам. раб. | Формы контроля                   |
| ПК-3        | +         | +          | +         | Зачёт, Индивидуальное задание,   |
|             |           |            |           | Контрольная работа, Тестирование |

#### 6. Рейтинговая система для оценки успеваемости обучающихся

Рейтинговая система не используется

#### 7. Учебно-методическое и информационное обеспечение дисциплины

#### 7.1. Основная литература

- 1. Легостаев Н.С. Магнитные элементы электронных устройств [Текст] : учебное пособие / Н. С. Легостаев ; Министерство образования и науки Российской Федерации, Томский государственный университет систем управления и радиоэлектроники (ТУСУР) (Томск). Томск : Эль Контент, 2014. 186 с. (наличие в библиотеке ТУСУР 8 экз.).
- 2. Магнитные элементы электронных устройств [Электронный ресурс] : учебное пособие / Н. С. Легостаев ; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск : [б. и.], 2014. 186 с [Электронный ресурс]: Режим доступа: <a href="https://edu.tusur.ru/training/publications/4272">https://edu.tusur.ru/training/publications/4272</a>.

#### 7.2. Дополнительная литература

1. Мелешин В.И. Транзисторная преобразовательная техника: монография / В. И. Мелешин. - М.: Техносфера, 2005. - 627[5] с. (наличие в библиотеке ТУСУР - 22 экз.).

#### 7.3. Учебно-методические пособия

#### 7.3.1. Обязательные учебно-методические пособия

1. Легостаев, Н. С. Магнитные элементы электронных устройств: Учебно-методическое пособие [Электронный ресурс] / Н. С. Легостаев. — Томск: ТУСУР, 2019. — 146 с. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/9187.

## 7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

#### Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

#### Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

#### Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

# 7.4. Современные профессиональные базы данных и информационные справочные системы

При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

#### 8. Материально-техническое и программное обеспечение дисциплины

#### 8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

#### 8.2. Материально-техническое и программное обеспечение для практических занятий

Вычислительная лаборатория: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 2016 ауд.

Описание имеющегося оборудования:

- Персональные компьютеры (16 шт.);
- Интерактивная доска «Smart-board» DViT (1 шт.);
- Мультимедийный проектор NEC (1 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- Adobe Acrobat Reader;
- LibreOffice;
- PTC Mathcad 13, 14;

#### 8.3. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows:
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip:
- Google Chrome.

### 8.4. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

### 9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

### 9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

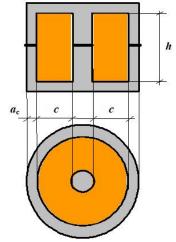
| Названия разделов (тем) дисциплины                                 | Формируемые компетенции | Формы контроля            | Оценочные материалы (ОМ)                                 |  |
|--------------------------------------------------------------------|-------------------------|---------------------------|----------------------------------------------------------|--|
| 1 Конструктивное исполнение МЭЭУ                                   | ПК-3                    | Контрольная<br>работа     | Примерный перечень вариантов (заданий) контрольных работ |  |
|                                                                    |                         | Тестирование              | Примерный перечень тестовых заданий                      |  |
| 2 Геометрические параметры МЭЭУ                                    | ПК-3                    | Контрольная<br>работа     | Примерный перечень вариантов (заданий) контрольных работ |  |
|                                                                    |                         | Тестирование              | Примерный перечень<br>тестовых заданий                   |  |
| 3 Электротехнические законы МЭЭУ                                   | ПК-3                    | Тестирование              | Примерный перечень<br>тестовых заданий                   |  |
| 4 Физические величины МЭЭУ, связанные с параметрами магнитопровода | ПК-3                    | Индивидуальное<br>задание | Примерный перечень вариантов индивидуальных заданий      |  |
|                                                                    |                         | Контрольная<br>работа     | Примерный перечень вариантов (заданий) контрольных работ |  |
|                                                                    |                         | Тестирование              | Примерный перечень тестовых заданий                      |  |
| 5 Трансформаторы                                                   | ПК-3                    | Индивидуальное<br>задание | Примерный перечень вариантов индивидуальных заданий      |  |
|                                                                    |                         | Контрольная<br>работа     | Примерный перечень вариантов (заданий) контрольных работ |  |
|                                                                    |                         | Тестирование              | Примерный перечень<br>тестовых заданий                   |  |
| 6 Дроссели электромагнитные                                        | ПК-3                    | Зачёт                     | Перечень вопросов для зачета                             |  |
|                                                                    |                         | Контрольная<br>работа     | Примерный перечень вариантов (заданий) контрольных работ |  |
|                                                                    |                         | Тестирование              | Примерный перечень тестовых заданий                      |  |

| 7 Дроссели насыщения и магнитные усилители | ПК-3 | Зачёт                 | Перечень вопросов для зачета                             |
|--------------------------------------------|------|-----------------------|----------------------------------------------------------|
|                                            |      | Контрольная<br>работа | Примерный перечень вариантов (заданий) контрольных работ |
|                                            |      | Тестирование          | Примерный перечень<br>тестовых заданий                   |
| 8 Умножители и делители частоты            | ПК-3 | Зачёт                 | Перечень вопросов для зачета                             |
|                                            |      | Контрольная<br>работа | Примерный перечень вариантов (заданий) контрольных работ |
|                                            |      | Тестирование          | Примерный перечень тестовых заданий                      |

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по дисциплине

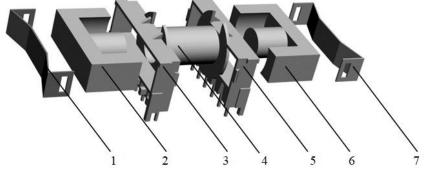
| дисциплине            |              |                                                                                     |                  |                 |  |
|-----------------------|--------------|-------------------------------------------------------------------------------------|------------------|-----------------|--|
| Оценка                | Баллы за ОМ  | Формулировка требований к степени сформированности планируемых результатов обучения |                  |                 |  |
|                       |              | знать                                                                               | уметь            | владеть         |  |
| 2                     | < 60% от     | отсутствие знаний                                                                   | отсутствие       | отсутствие      |  |
| (неудовлетворительно) | максимальной | или фрагментарные                                                                   | умений или       | навыков или     |  |
|                       | суммы баллов | знания                                                                              | частично         | фрагментарные   |  |
|                       |              |                                                                                     | освоенное        | применение      |  |
|                       |              |                                                                                     | умение           | навыков         |  |
| 3                     | от 60% до    | общие, но не                                                                        | в целом успешно, | в целом         |  |
| (удовлетворительно)   | 69% от       | структурированные                                                                   | но не            | успешное, но не |  |
|                       | максимальной | знания                                                                              | систематически   | систематическое |  |
|                       | суммы баллов |                                                                                     | осуществляемое   | применение      |  |
|                       |              |                                                                                     | умение           | навыков         |  |
| 4 (хорошо)            | от 70% до    | сформированные,                                                                     | в целом          | в целом         |  |
|                       | 89% от       | но содержащие                                                                       | успешное, но     | успешное, но    |  |
|                       | максимальной | отдельные                                                                           | содержащие       | содержащие      |  |
|                       | суммы баллов | проблемы знания                                                                     | отдельные        | отдельные       |  |
|                       |              |                                                                                     | пробелы умение   | пробелы         |  |
|                       |              |                                                                                     |                  | применение      |  |
|                       |              |                                                                                     |                  | навыков         |  |
| 5 (отлично)           | ≥ 90% от     | сформированные                                                                      | сформированное   | успешное и      |  |
|                       | максимальной | систематические                                                                     | умение           | систематическое |  |
|                       | суммы баллов | знания                                                                              |                  | применение      |  |
|                       |              |                                                                                     |                  | навыков         |  |


Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

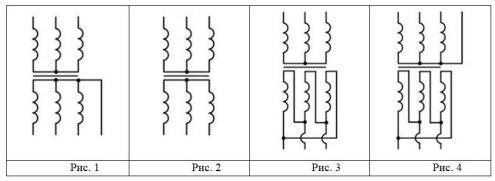
| Оценка Формулировка требований к степ | ени компетенции |
|---------------------------------------|-----------------|

| 2                     | Не имеет необходимых представлений о проверяемом материале         |  |  |
|-----------------------|--------------------------------------------------------------------|--|--|
| (неудовлетворительно) | или                                                                |  |  |
|                       | Знать на уровне ориентирования, представлений. Обучающийся знает   |  |  |
|                       | основные признаки или термины изучаемого элемента содержания, их   |  |  |
|                       | отнесенность к определенной науке, отрасли или объектам, узнает в  |  |  |
|                       | текстах, изображениях или схемах и знает, к каким источникам нужно |  |  |
|                       | обращаться для более детального его усвоения.                      |  |  |
| 3                     | Знать и уметь на репродуктивном уровне. Обучающихся знает          |  |  |
| (удовлетворительно)   | изученный элемент содержания репродуктивно: произвольно            |  |  |
|                       | воспроизводит свои знания устно, письменно или в демонстрируемых   |  |  |
|                       | действиях.                                                         |  |  |
| 4 (хорошо)            | Знать, уметь, владеть на аналитическом уровне. Зная на             |  |  |
|                       | репродуктивном уровне, указывать на особенности и взаимосвязи      |  |  |
|                       | изученных объектов, на их достоинства, ограничения, историю и      |  |  |
|                       | перспективы развития и особенности для разных объектов усвоения.   |  |  |
| 5 (отлично)           | Знать, уметь, владеть на системном уровне. Обучающийся знает       |  |  |
|                       | изученный элемент содержания системно, произвольно и доказательно  |  |  |
|                       | воспроизводит свои знания устно, письменно или в демонстрируемых   |  |  |
|                       | действиях, учитывая и указывая связи и зависимости между этим      |  |  |
|                       | элементом и другими элементами содержания дисциплины, его          |  |  |
|                       | значимость в содержании дисциплины.                                |  |  |
|                       | -                                                                  |  |  |

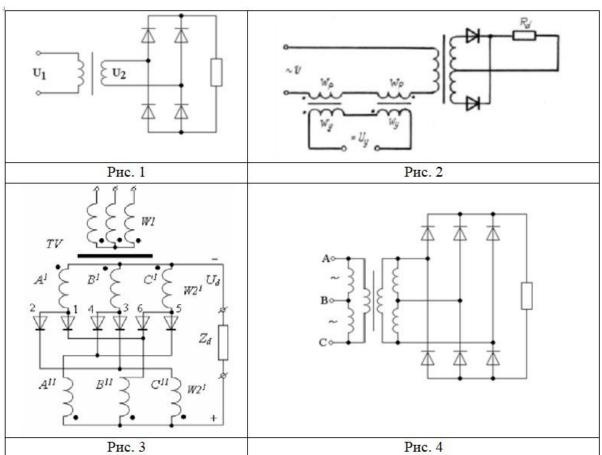
#### 9.1.1. Примерный перечень тестовых заданий


- 1. Какое устройство не относится к классу магнитных элементов электронных устройств?
  - 1. Дроссель
  - 2. Трансформатор
  - 3. Тиристор
  - 4. Дроссель насыщения
- 2. Какой магнитный элемент выполняет функцию преобразования одной системы переменного тока в другую систему переменного тока?
  - 1. Дроссель
  - 2. Дроссель насыщения
  - 3. Трансформатор
  - 4. Магнгитный усилитель
- 3. Конструкция магнитного элемента какого типа изображена на рисунке?



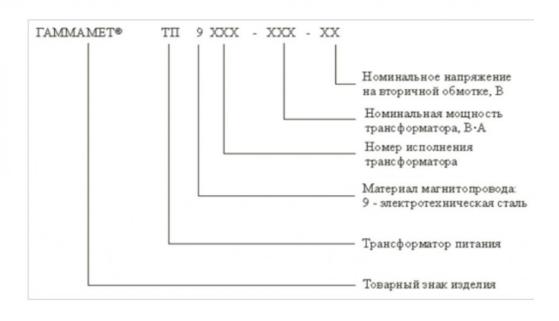

- 1. Броневая
- 2. Стержневая
- 3. Тороидальная

#### 4. Чашечная


- 4. Чему равен коэффициент трансформации однофазного двухобмоточного трансформатора?
  - 1. Отношению мощности первичной обмотки к мощности вторичной обмотки
  - 2. Отношению числа витков первичной обмотки к числу витков вторичной обмотки
  - 3. Отношению напряжения холостого хода к номинальному напряжению
  - 4. Отношению тока холостого хода к номинальному току
- 5. Как (какими цифрами) обозначен сердечник магнитного элемента на рисунке?

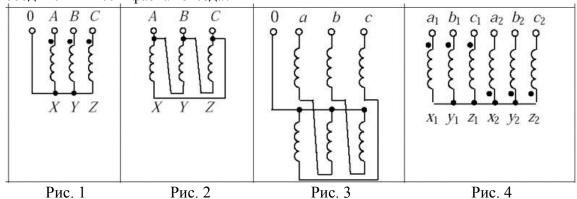


- 1.1и7
- 2. 2 и 6
- 3. 3 и 5
- 4.4
- 6. На каком рисунке изображено условное графическое обозначение на схеме электрической принципиальной трехфазного трансформатора, имеющего схему соединения «звезда звезда» с выведенной нулевой точкой обмотки низшего напряжения?




- 1. Рис. 1
- 2. Рис. 2
- 3. Рис. 3
- 4. Рис. 4
- 7. На каком рисунке в составе схемы имеется дроссель насыщения?




- 1. Рис. 1
- 2. Рис. 2
- 3. Рис. 3
- 4. Рис. 4
- 8. Вы нашли информацию о трансформаторах, приведенную ниже. Сколько обмоток имеет трансформатор ТП9177?

### Условное обозначение трансформаторов ТП 9



| Трансформатор | Мощность,<br>кВт | Первичная обмотка, В | Вторичная<br>обмотка, В | Ток во вторичной<br>обмотке*, А | Размеры,<br>мм |
|---------------|------------------|----------------------|-------------------------|---------------------------------|----------------|
| TП9177        | 0,004            | 220                  | 7/7/7/2x16/2x16         | 0,5/0,1/0,1/0,02/0,02/0,02/0,02 | 50x25          |
| ТП9114        | 0,01             | 220                  | 18/18/35+25             | 0,4/0,03/0,03/0,03              | 60x35          |
| T∏9131        | 0,01             | 220                  | 36                      | 0,3                             | 50x30          |
| TП9167        | 0,01             | 220                  | 27                      | 0,15                            | 50x30          |
| T∏9117        | 0,012            | 220                  | 17                      | 0,7                             | 60x45          |

- 1.5
- 2.6
- 3.7
- 4.8
- 9. Какая из представленных схем соединения обмоток трансформатора соответствует схеме соединения шестифазная звезда?



- 1. Рис. 1
- 2. Рис. 2
- 3. Рис. 3
- 4. Рис. 4
- 10. Какое число витков должна иметь вторичная обмотка трансформатора, если: напряжение первичной обмотки .......220 В; количество витков первичной обмотки ...... 2200

и требуется получить напряжение вторичной обмотки в режиме холостого хода 22 В?

- 1. 22000
- 2. 2200
- 3. 220
- 4. 22

#### 9.1.2. Перечень вопросов для зачета

- 1. Приведите классификацию и условные графические обозначения МЭЭУ
- 2. Поясните конструктивное исполнение МЭЭУ, приведите эскизы
- 3. Дроссели электромагнитные назначение и классификация
- 4. Индуктивность дросселя без зазора и с зазором получить формулу для индуктивности и пояснить входящие в нее величины
- 5. Запишите и поясните систему уравнений однофазного двухобмоточного трансформатора

#### 9.1.3. Примерный перечень вариантов (заданий) контрольных работ

1. КР1 Вариант 1

1. Имеется 2 ферромагнитных сердечника - О-образного типа из материала 3422 с размерами:

```
a_c = 20 \text{ MM}, B_c = 40 \text{ MM},

c = 40 \text{ MM}, h = 80 \text{ MM}.
```

Технические показатели сердечников характеризуются параметрами:

```
коэффициент заполнения – 0,85, удельный вес – 7,65 г/куб.см, удельные потери мощности - 14 Вт/кг при индукции 0,5 Тл и частоте 1 КГц; индукция насыщения – 1,6 Тл.
```

На указанных сердечниках выполнен броневой однофазный трансформатор с медными обмотками, допускающий работу с перегревом не более 50 градусов по Цельсию при частоте 8 КГп.

Обмоточный материал имеет параметры:

```
коэффициент заполнения 0,3, удельный вес 8,8 г/куб.см, удельное сопротивление 2,1·10<sup>-8</sup> Ом·м. Заполнение окна - неполное, охлаждение - воздушное, 8 м/с.
```

Требуется определить:

- 1.1. Объемы, веса, поверхности охлаждения магнитопровода и катушек.
- 1.2. Допустимые потери мощности.
- 1.3. Плотность тока и индукцию.
- 1.4. Максимальную входную мощность.
- 1.5. Фактический перегрев катушек.

#### 2. КР1 Вариант 2

#### ВАРИАНТ 2

1. Имеется 2 ферромагнитных сердечника - О-образного типа из материала 3422 с размерами:

```
a_c = 20 \text{ MM}, B_c = 20 \text{ MM},

c = 20 \text{ MM}, h = 80 \text{ MM}.
```

Технические показатели сердечников характеризуются параметрами:

```
коэффициент заполнения — 0,85,
удельный вес — 7,65 г/куб.см,
удельные потери мощности - 14 Вт/кг,
при индукции 0,5 Тл и частоте 1 КГц;
индукция насыщения- 1,6 Тл.
```

На указанных сердечниках выполнен стержневой однофазный трансформатор с медными обмотками, допускающий работу с перегревом не более 50 градусов по Цельсию при частоте 5 КГп.

Обмоточный материал имеет параметры:

```
коэффициент заполнения 0,3, 
удельный вес 8,8 г/куб.см, 
удельное сопротивление 2,1·10<sup>-8</sup> Ом·м. 
Заполнение окна - неполное, 
охлаждение - естественное.
```

Требуется определить:

- 1.1. Объемы, веса, поверхности охлаждения магнитопровода и катушек.
- 1.2. Допустимые потери мощности.
- 1.3. Плотность тока и индукцию.
- 1.4. Максимальную входную мощность.
- 1.5. Фактический перегрев катушек.
- КР1 Вариант 3

1. Имеется 2 ферромагнитных сердечника - О-образного типа из материала 3422 с размерами:

```
a_c= 20 mm, B_c= 40 mm, c= 40 mm, h= 100 mm.
```

Технические показатели сердечников характеризуются параметрами:

коэффициент заполнения – 0,85, удельный вес – 7,65 г/куб.см, удельные потери мощности – 8,5 Вт/кг

при индукции 0,5 Тл и частоте 1 КГц;

индукция насыщения- 1,6 Тл.

На указанных сердечниках выполнен броневой однофазный трансформатор с алюминиевыми обмотками, допускающий работу с перегревом не более 40 градусов по Цельсию при частоте 5 КГп.

Обмоточный материал имеет параметры:

коэффициент заполнения 0,3, удельный вес 2,7 г/куб.см, удельное сопротивление 3,4·10<sup>-8</sup> Ом·м. Заполнение окна - неполное, охлаждение - естественное.

Требуется определить:

- 1.1. Объемы, веса, поверхности охлаждения магнитопровода и катушек.
- 1.2. Допустимые потери мощности.
- 1.3. Плотность тока и индукцию.
- 1.4. Максимальную входную мощность.
- 1.5. Фактический перегрев катушек.
- 4. КР1 Вариант 4

#### ВАРИАНТ 4

1. Имеется 2 ферромагнитных сердечника - тороидального типа из материала 3422 с размерами:

```
a_c= 20 mm, B_c= 20 mm, c= 100 mm, h= - mm.
```

Технические показатели сердечников характеризуются параметрами:

коэффициент заполнения — 0,85, удельный вес — 7,65 г/куб.см, удельные потери мощности - 10 Вт/кг при индукции 0,5 Тл и частоте 1 КГц; индукция насыщения- 1,6 Тл.

На указанных сердечниках выполнен тороидальный однофазный трансформатор с медными обмотками, допускающий работу с перегревом не более 50 градусов по Цельсию при частоте 8 КГи.

Обмоточный материал имеет параметры:

коэффициент заполнения 0,25, удельный вес 8,8 г/куб.см, удельное сопротивление 2,1·10<sup>-8</sup> Ом·м. Заполнение окна - неполное, охлаждение - воздушное, 8 м/с.

Требуется определить:

- 1.1. Объемы, веса, поверхности охлаждения магнитопровода и катушек.
- 1.2. Допустимые потери мощности.
- 1.3. Плотность тока и индукцию.
- 1.4. Максимальную входную мощность.
- 1.5. Фактический перегрев катушек.
- КР1 Вариант 5

1. Имеется 2 ферромагнитных сердечника - тороидального типа из материала 3422 с размерами:

```
a_c = 20 \text{ mm}, B_c = 20 \text{ mm},

c = 100 \text{ mm}, h = - \text{ mm}.
```

Технические показатели сердечников характеризуются параметрами:

коэффициент заполнения - 0,85,

удельный вес - 7,65 г/куб.см,

удельные потери мощности – 8,5 Вт/кг

при индукции 0,5 Тл и частоте 1 КГц;

индукция насыщения- 1,6 Тл.

На указанных сердечниках выполнен тороидальный однофазный трансформатор с алюминиевыми обмотками, допускающий работу с перегревом не более 50 градусов по Цельсию при частоте 5 КГц.

Обмоточный материал имеет параметры:

коэффициент заполнения 0,2,

удельный вес 2,7 г/куб.см,

удельное сопротивление 3,4·10<sup>-8</sup> Ом·м.

Заполнение окна - неполное,

охлаждение - естественное.

#### Требуется определить:

- 1.1. Объемы, веса, поверхности охлаждения магнитопровода и катушек.
- 1.2. Допустимые потери мощности.
- 1.3. Плотность тока и индукцию.
- 1.4. Максимальную входную мощность.
- 1.5. Фактический перегрев катушек.
- КР2 Вариант 1

Схема замещения трансформатора имеет параметры:

суммарное индуктивное сопротивление рассеяния - 2 Ом,

активные сопротивления::

первичной обмотки – 0,5 Ом,

вторичной - 0,03 Ом,

реактивное сопротивление намагничивания - 250 Ом,

активное сопротивление от потерь в стали - 50 Ом,

проходная емкость - 150 пФ,

коэффициент трансформации - 5,

напряжение питающей сети - 220 В,

частота - 5500 Гц.

#### Определить:

- 2.1. Токи холостого хода и короткого замыкания.
- 2.2. Выходное напряжение при токе нагрузки 40 А.
- 2.3. Резонансные частоты трансформатора.
- 2.4. Длительности переходных процессов при включении на холостом ходу и под нагрузкой при коэффициенте мощности 0,9.
- 2.5. Коэффициент полезного действия и коэффициент мощности схемы замещения при номинальном токе нагрузки
- 7. КР2 Вариант 2

```
Схема замещения трансформатора имеет параметры: суммарное индуктивное сопротивление рассеяния — 2,4 Ом, активные сопротивления:: первичной обмотки — 0,6 Ом, вторичной- 0,03 Ом, реактивное сопротивление намагничивания - 280 Ом, активное сопротивление от потерь в стали- 60 Ом, проходная емкость - 150 пФ, коэффициент трансформации - 5, напряжение питающей сети - 220 В, частота - 5000 Гц.
```

#### Определить:

- 2.1. Токи холостого хода и короткого замыкания
- 2.2. Выходное напряжение при токе нагрузки 40 А
- 2.3. Резонансные частоты трансформатора
- 2.4. Длительности переходных процессов при включении на холостом ходу и под нагрузкой при коэффициенте мощности 0,8.
- 2.5. Коэффициент полезного действия и коэффициент мощности схемы замещения при номинальном токе нагрузки

#### 8. КР2 Вариант 3

```
Схема замещения трансформатора имеет параметры: суммарное индуктивное сопротивление рассеяния - 10 Ом, активные сопротивления: первичной обмотки - 2 Ом, вторичной- 0,5 Ом, реактивное сопротивление намагничивания - 2000 Ом, активное сопротивление от потерь в стали- 400 Ом, проходная емкость - 200 пФ, коэффициент трансформации - 2, напряжение питающей сети - 220 В, частота - 1000 Гц.
```

#### Определить:

- 2.1. Токи холостого хода и короткого замыкания.
- 2.2. Выходное напряжение при токе нагрузки 2 А.
- 2.3. Резонансные частоты трансформатора.
- 2.4. Длительности переходных процессов при включении на холостом ходу и под нагрузкой при коэффициенте мощности 0,8.
- 2.5. Коэффициент полезного действия и коэффициент мощности схемы замещения при номинальном токе нагрузки
- 9. КР2 Вариант 4

. Схема замещения трансформатора имеет параметры:

суммарное индуктивное сопротивление рассеяния – 2,4 Ом,

активные сопротивления:

первичной обмотки – 0,5 Ом,

вторичной- 0,02 Ом,

реактивное сопротивление намагничивания - 300 Ом,

активное сопротивление от потерь в стали- 50 Ом,

проходная емкость - 140 пФ,

коэффициент трансформации - 5,

напряжение питающей сети - 220 В,

частота - 5000 Гц.

#### Определить:

- 2.1. Токи холостого хода и короткого замыкания
- 2.2. Выходное напряжение при токе нагрузки 40 А
- 2.3. Резонансные частоты трансформатора
- 2.4. Длительности переходных процессов при включении на холостом ходу и под нагрузкой при коэффициенте мощности 0,65.
- Коэффициент полезного действия и коэффициент мощности схемы замещения при номинальном токе нагрузки

#### 10. КР2 Вариант 5

Схема замещения трансформатора имеет параметры:

суммарное индуктивное сопротивление рассеяния - 2,5 Ом,

активные сопротивления:

первичной обмотки - 0,4 Ом,

вторичной- 0,35 Ом,

реактивное сопротивление намагничивания - 400 Ом,

активное сопротивление от потерь в стали- 100 Ом,

проходная емкость - 120 пФ,

коэффициент трансформации - 1,

напряжение питающей сети - 220 В,

частота - 2500 Гц.

#### Определить:

- 2.1. Токи холостого хода и короткого замыкания.
- 2.2. Выходное напряжение при токе нагрузки 8 А.
- 2.3. Резонансные частоты трансформатора.
- 2.4. Длительности переходных процессов при включении на холостом ходу и под нагрузкой при коэффициенте мощности 0,7.
- 2.5. Коэффициент полезного действия и коэффициент мощности схемы замещения при номинальном токе нагрузки

#### 9.1.4. Примерный перечень вариантов индивидуальных заданий

#### 1. И31 вариант 1

#### ВАРИАНТ 1

Рассчитать двухобмоточный броневой трансформатор с медными обмотками, работающий в условиях принудительного воздушного охлаждения. Трансформатор должен удовлетворять критерию минимума веса с параметрами:

вторичное напряжение U2, B . . . . . . . . . . . . . . . . . 6

частота сети питания f1, к $\Gamma$ ц . . . . . . . . . . . . . . . . . 0,05

коэффициенты мощности соѕф и полезного действия η должны быть не менее 0,95.

2. ИЗ1 вариант 2

Рассчитать двухобмоточный стержневой трансформатор с алюминиевыми обмотками, работающий в условиях естественного воздушного охлаждения. Трансформатор должен удовлетворять критерию минимума веса с параметрами:

3. И31 вариант 3

#### ВАРИАНТ 3

Рассчитать двухобмоточный броневой трансформатор с медными обмотками, работающий в условиях принудительного воздушного охлаждения. Трансформатор должен удовлетворять критерию минимума веса с параметрами:

4. ИЗ1 вариант 4

#### ВАРИАНТ 4

Рассчитать двухобмоточный тороидальный трансформатор с алюминиевыми обмотками, работающий в условиях естественного воздушного охлаждения. Трансформатор должен удовлетворять критерию минимума массы с параметрами:

5. ИЗ1 вариант 5

#### ВАРИАНТ 5

Рассчитать двухобмоточный броневой трансформатор с медными обмотками, работающий в условиях принудительного воздушного охлаждения. Трансформатор должен удовлетворять критерию минимума стоимости с параметрами:

#### 6. Содержание ИЗ2

Используя данные, полученные при выполнении ИЗ1, определить для МЭ индуктивность L, если этот элемент будет использован в качестве дросселя.

#### 9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление

студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
  - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

### 9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

| Категории обучающихся  | Виды дополнительных оценочных материалов | Формы контроля и оценки результатов обучения |  |
|------------------------|------------------------------------------|----------------------------------------------|--|
| С нарушениями слуха    | Тесты, письменные                        | Преимущественно письменная                   |  |
|                        | самостоятельные работы, вопросы          | проверка                                     |  |
|                        | к зачету, контрольные работы             |                                              |  |
| С нарушениями зрения   | Собеседование по вопросам к              | Преимущественно устная                       |  |
|                        | зачету, опрос по терминам                | проверка (индивидуально)                     |  |
| С нарушениями опорно-  | Решение дистанционных тестов,            | Преимущественно                              |  |
| двигательного аппарата | контрольные работы, письменные           | дистанционными методами                      |  |
|                        | самостоятельные работы, вопросы          |                                              |  |
|                        | к зачету                                 |                                              |  |
| С ограничениями по     | Тесты, письменные                        | Преимущественно проверка                     |  |
| общемедицинским        | самостоятельные работы, вопросы          | методами, определяющимися                    |  |
| показаниям             | к зачету, контрольные работы,            | исходя из состояния                          |  |
|                        | устные ответы                            | обучающегося на момент                       |  |
|                        |                                          | проверки                                     |  |

### 9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;

- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

#### Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

#### Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

#### Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

#### ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ПрЭ протокол № 24 от «\_8\_» \_ 11 \_ 2023 г.

### СОГЛАСОВАНО:

| Должность                          | Инициалы, фамилия | Подпись                                                  |
|------------------------------------|-------------------|----------------------------------------------------------|
| Заведующий выпускающей каф. ПрЭ    | С.Г. Михальченко  | Согласовано,<br>706957f1-d2eb-4f94-<br>b533-6139893cfd5a |
| Заведующий обеспечивающей каф. ПрЭ | С.Г. Михальченко  | Согласовано,<br>706957f1-d2eb-4f94-<br>b533-6139893cfd5a |
| Начальник учебного управления      | И.А. Лариошина    | Согласовано,<br>c3195437-a02f-4972-<br>a7c6-ab6ee1f21e73 |
| ЭКСПЕРТЫ:                          |                   |                                                          |
| Профессор, каф. ПрЭ                | Н.С. Легостаев    | Согласовано,<br>6332ca5f-c16e-4579-<br>bbc4-ee49773dfd8d |
| Доцент, каф. ПрЭ                   | Д.О. Пахмурин     | Согласовано,<br>се9е048a-2a49-44a0-<br>b2ab-bc9421935400 |
| РАЗРАБОТАНО:                       |                   |                                                          |
| Профессор, каф. ПрЭ                | Т.Н. Зайченко     | Разработано,<br>e2f6f278-7df5-4ac2-<br>974a-10638be62335 |