МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Проректор по учебной работе _____ Сенченко П.В. «13» 12 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИКА

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 20.03.01 Техносферная безопасность

Направленность (профиль) / специализация: Управление техносферной безопасностью

Форма обучения: заочная (в том числе с применением дистанционных образовательных технологий)

Кафедра: радиоэлектронных технологий и экологического мониторинга (РЭТЭМ)

Курс: **2** Семестр: **3**

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	3 семестр	Всего	Единицы
Лекционные занятия	10	10	часов
Лабораторные занятия	8	8	часов
Самостоятельная работа	107	107	часов
Самостоятельная работа под руководством преподавателя	8	8	часов
Контрольные работы	2	2	часов
Подготовка и сдача экзамена	9	9	часов
Общая трудоемкость	144	144	часов
(включая промежуточную аттестацию)		4	3.e.

Формы промежуточной аттестации	Семестр	Количество
Экзамен	3	
Контрольные работы	3	1

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сенченко П.В.

Должность: Проректор по учебной работе

Дата подписания: 13.12.2023 Уникальный программный ключ: a1119608-cdff-4455-b54e-5235117c185c

1. Общие положения

1.1. Цели дисциплины

1. Формирование целостного представления о физических процессах и явлениях, протекающих в природе, понимания возможностей современных научных методов познания природы и владения ими на уровне, необходимом для решения практических задач, возникающих при выполнении профессиональных обязанностей.

1.2. Задачи дисциплины

- 1. Освоение студентами и умение использовать основные понятия, законы и модели физики.
- 2. Освоение студентами и умение использовать методы теоретического и экспериментального исследований в физике.
 - 3. Освоение методов оценок порядков физических величин.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Обязательная часть.

Модуль дисциплин: Модуль укрупненной группы специальностей и направлений (general hard skills – GHS).

Индекс дисциплины: Б1.О.02.06.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

Компетенция	Индикаторы достижения	Планируемые результаты обучения по			
Компетенции	компетенции	дисциплине			
Универсальные компетенции					
Общепрофессиональные компетенции					

ОПК-1. Способен	ОПК-1.1. Знает	Понимает основные направления развития
учитывать	современные тенденции	техники и технологий в области
современные	развития техники и	техносферной безопасности, включая
тенденции развития	технологий в области	новые методы и подходы к снижению
техники и технологий в	1 1	рисков и минимизации последствий
области техносферной	измерительной и	техногенных катастроф.
безопасности,	вычислительной техники,	
измерительной и	информационных	
вычислительной	технологий при решении	
техники,	типовых задач в своей	
информационных	профессиональной	
технологий при	деятельности	
решении типовых	ОПК-1.2. Умеет выявлять	Умеет применять физические законы и
задач в области	современные тенденции	математические методы для решения задач
профессиональной	развития техники и	теоретического и прикладного характера
деятельности,	технологий в области	
связанной с защитой	техносферной безопасности,	
окружающей среды и	измерительной и	
обеспечением	вычислительной техники,	
безопасности человека	информационных	
	технологий при решении	
	типовых задач в области	
	профессиональной	
	деятельности, связанной с	
	защитой окружающей среды	
	и охраной труда	
	ОПК-1.3. Имеет	Владеет навыками использования знаний
	практический опыт решения	физики и математики при решении
	типовых задач в сфере	практических задач в профессиональной
	техносферной безопасности	деятельности.
	с учетом современных	
	тенденций развития техники	
	и технологий в области	
	измерительной и	
	вычислительной техники,	
	информационных	
	технологий	
	Профессиональные к	омпетенции
_	_	_

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Вили унобной доджан нооту	Всего	Семестры
Виды учебной деятельности		3 семестр
Контактная работа обучающихся с преподавателем, всего	28	28
Лекционные занятия	10	10

Лабораторные занятия	8	8
Самостоятельная работа под руководством преподавателя	8	8
Контрольные работы	2	2
Самостоятельная работа обучающихся, всего	107	107
Подготовка к лабораторной работе	5	5
Написание отчета по лабораторной работе	4	4
Самостоятельное изучение тем (вопросов) теоретической части	56	56
дисциплины		
Проработка лекционного материала	20	20
Подготовка к контрольной работе	22	22
Подготовка и сдача экзамена	9	9
Общая трудоемкость (в часах)	144	144
Общая трудоемкость (в з.е.)	4	4

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины	Лек. зан., ч	Лаб. раб.	Контр. раб.	СРП, ч.	Сам. раб., ч	Всего часов (без промежуточной аттестации)	Формируемые компетенции
			3	семест	p		
1 Механика	4	4	2	2	29	41	ОПК-1
2 Термодинамика и	4	-		4	28	36	ОПК-1
молекулярная физика							
3 Электростатика и	2	4		2	30	38	ОПК-1
магнетизм							
Итого за семестр	10	8	2	8	87	115	
Итого	10	8	2	8	87	115	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов (тем) дисциплины

Названия разделов (тем) дисциплины	C	Содержан	ие разделов	з (тем) дисцип	лины	Трудоемкость (лекционные занятия), ч	СРП, ч	Формируемые компетенции
				3 c	еместр				

1 Механика	Метод координат. Векторы. Определения первичных	4	2	ОПК-1
тислапика	физических терминов. Система координат. Скорость и	7		011K-1
	ускорение. Векторная алгебра. Кинематика			
	материальной точки. Скорость и ускорение при			
	криволинейном движении. Кинематика вращательного			
	движения. Законы движения. Понятие силы. Второй			
	закон Ньютона. Масса. Третий закон Ньютона.			
	Инерциальные системы отсчета. Неинерциальные			
	системы отсчета. Принцип относительности Галилея.			
	Центр инерции (центр масс) протяженного тела.			
	Определение положения центра масс у простых тел.			
	Импульс тела. Механическая работа и кинетическая			
	энергия. Консервативные силы. Потенциальная			
	энергия. Градиент. Закон сохранения механической			
	энергии. Упругие свойства твердых тел. Закон Гука.			
	Модуль Юнга и отношение Пуассона. Деформация			
	сжатия закрепленного стержня. Термическая			
	деформация твердых тел. Динамика твердого тела.			
	Момент инерции твердого тела. Моменты инерции			
	некоторых простых тел. Момент силы. Момент			
	импульса. Трехмерное вращение твердых тел. Сила			
	всемирного тяготения. Закон всемирного тяготения			
	Ньютона. Гравитация вблизи протяженных тел.			
	Приливные силы. Задача Кеплера. Малые колебания.			
	Энергия колебательного движения. Сложение			
	одномерных колебаний. Биения. Сложение взаимно			
	перпендикулярных колебаний. Колебания связанных			
	маятников.			
	Итого	4	2	
Термодинамика	Основные положения молекулярно-кинетической	4	4	ОПК-1
молекулярная	теории. Некоторые понятия теории вероятности.	-		OHK I
молекулярная ризика	Плотность распределения вероятности. Время и длина			
изика				
	свободного пробега молекул в газе. Процессы переноса.			
	Коэффициенты переноса в газе. Распределение энергии			
	между молекулами вещества. Давление идеального газа			
	на твердую стенку. Уравнение состояния идеального			
	газа. Барометрическая формула. Внутренняя энергия			
	газа. Адиабатический процесс. Газовые законы.			
	Теплоемкость идеального газа. Термодинамический			
	метод. Принцип температуры. Принцип энтропии.			
	Абсолютная температура и абсолютная энтропия.			
	Принцип энергии: теплота и работа. Изотермический			
	процесс. Изохорический процесс. Изобарический			
	процесс. Адиабатический процесс. Политропический			
	процесс. Циклические (круговые) процессы. Цикл			
	дизельного двигателя. Цикл Карно. Возрастание			
	энтропии в процессах выравнивания. Закон возрастания			
	энтропии и необратимость.	Λ	1	
	Итого	4	4	

2.0		2		OFFIC 1
3 Электростатика	Электрическое поле в вакууме. Электрический заряд в	2	2	ОПК-1
и магнетизм	вакууме. Закон Кулона. Напряженность электрического			
	поля. Принцип суперпозиции. Понятие потока. Теорема			
	Гаусса. Вычисление полей с помощью теоремы Гаусса.			
	Поле бесконечной однородно заряженной плоскости.			
	Поле двух равномерно заряженных плоскостей. Поле			
	бесконечно длинного заряженного цилиндра. Поле			
	заряженной пустотелой сферы. Поле объемно			
	заряженного шара. Работа при перемещении			
	заряженных частиц в электрическом поле. Теорема о			
	циркуляции вектора Е. Потенциал электростатического			
	поля. Связь между напряженностью поля и			
	потенциалом. Эквипотенциальные поверхности.			
	Электрическое поле диполя. Диполь в электрическом			
	поле. Электрическое поле в диэлектриках. Поляризация			
	диэлектриков. Связанные заряды. Относительная			
	диэлектрическая проницаемость. Вектор			
	электрического смещения. Теорема Гаусса для вектора			
	электрического смещения. Условия на границе раздела			
	двух диэлектриков. Сегнетоэлектрики. Проводники в			
	электрическом поле. Распределение электрических			
	зарядов на проводнике. Конденсаторы. Соединение			
	конденсаторов. Энергия заряженного конденсатора.			
	Энергия электрического поля. Энергия взаимодействия			
	точечных зарядов. Постоянный электрический ток.			
	Электрический ток. Плотность тока. Уравнение			
	непрерывности. Электродвижущая сила. Падение			
	напряжения. Разность потенциалов. Закон Ома.			
	Сопротивление проводников. Закон Ома в			
	дифференциальной форме. Сверхпроводимость.			
	Мощность тока. Закон Джоуля-Ленца. Правила			
	Кирхгофа для цепей постоянного тока. Электрический			
	ток в вакууме. Электрический ток в газах. Магнитное			
	поле в вакууме. Магнитная индукция. Силовые линии.			
	Принцип суперпозиции. Закон Био—Савара—Лапласа.			
	Сила, действующая на ток в магнитном поле. Сила			
	Ампера. Действие магнитного поля на рамку с током.			
	Сила Лоренца. Движение заряженной частицы в			
	однородном магнитном поле. Эффект Холла. Поток			
	вектора магнитной индукции. Циркуляция вектора			
	магнитной индукции. Работа, совершаемая при			
	перемещении тока в магнитном поле. Магнитное поле			
	соленоида. Магнитное поле тороида. Магнитное поле в			
	веществе. Намагничивание магнетика. Молекулярные			
	токи. Напряженность магнитного поля. Относительная			
	магнитная проницаемость. Магнитные свойства			
	вещества. Виды магнетиков. Ферромагнетизм. Условия			
	на границе двух магнетиков. Электромагнитная			
	индукция. Электродвижущая сила индукции (ЭДС).			
	Явление самоиндукции. Индуктивность. Токи Фуко.			
	Скин-эффект. Взаимная индукция. Индуктивность			
	трансформатора. Энергия магнитного поля. Уравнения			
	максвелла. Вихревое электрическое поле. Ток			
	смещения. Полный ток. Уравнения Максвелла			
	Итого	2	2	
	Итого за семестр	10	8	
	Итого	10	8	
L	111010	-	1 -	<u> </u>

5.3. Контрольные работы

Виды контрольных работ и часы на контрольные работы приведены в таблице 5.3.

Таблица 5.3 – Контрольные работы

№ п.п.	Виды контрольных работ	Трудоемкость, ч	Формируемые компетенции
	3 семестр		
1 Контрольная работа с автоматизированной проверкой		2	ОПК-1
	Итого за семестр	2	
	Итого	2	

5.4. Лабораторные занятия

Наименование лабораторных работ приведено в таблице 5.4.

Таблица 5.4 – Наименование лабораторных работ

тионици в напи	табораторных работ	1	
Названия разделов (тем)	Наименование лабораторных	Трудоемкость, ч	Формируемые
дисциплины	работ	трудосмкость, ч	компетенции
	3 семестр		
1 Механика	Изучение вращательного и	4	ОПК-1
	поступательного движений на		
	машине Атвуда		
	Итого	4	
3 Электростатика и	Определение удельного заряда	4	ОПК-1
магнетизм	электрона методом магнетрона		
	Итого	4	
	Итого за семестр	8	
	Итого	8	

5.5. Практические занятия (семинары)

Не предусмотрено учебным планом

5.6. Контроль самостоятельной работы (курсовой проект / курсовая работа)

Не предусмотрено учебным планом

5.7. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.7.

Таблица 5.7. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

3 семестр							
	Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля		
	1 аолица 5.7.	риды самостолтельной ра	юоты, трудосикс	леть и формируем	ім компетенции		

1 Механика	Подготовка к лабораторной работе	3	ОПК-1	Лабораторная работа
	Написание отчета по лабораторной работе	2	ОПК-1	Отчет по лабораторной работе
	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	18	ОПК-1	Тестирование, Экзамен
	Проработка лекционного материала	10	ОПК-1	Экзамен
	Подготовка к контрольной работе	6	ОПК-1	Контрольная работа
	Итого	39		•
2 Термодинамика и молекулярная физика	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	20	ОПК-1	Тестирование, Экзамен
	Проработка лекционного материала	6	ОПК-1	Экзамен
	Подготовка к контрольной работе	8	ОПК-1	Контрольная работа
	Итого	34		•
3 Электростатика и магнетизм	Подготовка к лабораторной работе	2	ОПК-1	Лабораторная работа
	Написание отчета по лабораторной работе	2	ОПК-1	Отчет по лабораторной работе
	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	18	ОПК-1	Тестирование, Экзамен
	Проработка лекционного материала	4	ОПК-1	Экзамен
	Подготовка к контрольной работе	8	ОПК-1	Контрольная работа
	Итого	34		•
	Итого за семестр	107		
	Подготовка и сдача экзамена	9		Экзамен
	Итого	116		1

5.8. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.8.

Таблица 5.8 – Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Фольтинующи	Виды учебной деятельности					
Формируемые компетенции	Лек.	Лек. Лаб. Конт.Раб. С		СВП	Сам.	Формы контроля
компетенции	зан.	раб.	Crii	раб.		
ОПК-1	+	+ + + + +		Контрольная работа,		
						Лабораторная работа, Отчет по
						лабораторной работе,
						Тестирование, Экзамен

6. Рейтинговая система для оценки успеваемости обучающихся

Рейтинговая система не используется

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

- 1. Козырев А. В. Механика: Учебное пособие / Козырев А. В. Томск: Эль Контент, 2012. 136 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 2. Козырев А. В. Термодинамика и молекулярная физика: Учебное пособие / Козырев А. В. Томск: Эль Контент, 2012. 114 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 3. Чужков Ю. П. Электростатика и магнетизм: Учебное пособие / Чужков Ю. П. Томск: Эль Контент, 2014. 140 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.

7.2. Дополнительная литература

- 1. Бондарев, Б. В. Курс общей физики в 3 кн. Книга 1: механика: учебник для бакалавров / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. Москва: Издательство Юрайт, 2019. 353 с Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/425487.
- 2. Бондарев, Б. В. Курс общей физики в 3 кн. Книга 3: термодинамика, статистическая физика, строение вещества: учебник для бакалавров / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. 2-е изд. Москва: Издательство Юрайт, 2019. 369 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/425491.
- 3. Физика. Словарь-справочник в 2 ч. Часть 1 : справочник для вузов / Е. С. Платунов, В. А. Самолетов, С. Е. Буравой, С. С. Прошкин. 2-е изд., стер. Москва : Издательство Юрайт, 2018. 379 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/421175.
- 4. Физика. Словарь-справочник в 2 ч. Часть 2 : справочник для вузов / Е. С. Платунов, В. А. Самолетов, С. Е. Буравой, С. С. Прошкин. Москва : Издательство Юрайт, 2018.— 396 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/421238.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Медовник А. В. Физика. Методические указания по организации самостоятельной работы : Методические указания / Медовник А. В., Окс Е. М. Томск : ФДО, ТУСУР, 2018. 22 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 2. Мухачев В. А. Физика 3. Примеры решения задач: Учебно-методическое пособие / Мухачев В. А. Томск: ФДО, ТУСУР, 2014. 51 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 3. Бурдовицин В.А., Лячин А.В., Климов А.С. Физика-1 [Электронный ресурс]: методические указания по выполнению лабораторной работы «Изучение вращательного и поступательного движений на машине Атвуда». Томск ФДО, ТУСУР, 2016. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library/.

- 4. Бурачевский Ю. А., Климов А. С. Физика : методические указания по выполнению лабораторной работы «Определение удельного заряда электрона методом магнетрона» / Ю. А. Бурачевский, А. С. Климов. Томск : ФДО, ТУСУР, 2017. 12 с Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: .
- 5. Общие требования и правила оформления отчета о лабораторной работе по физике: Методические указания / А. А. Зенин 2023. 21 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/10389.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Иное учебно-методическое обеспечение

1. Сметанин С.В., Козырев А.В. Физика-1 [Электронный ресурс]: электронный курс / С.В. Сметанин, А.В. Козырев - Томск ТУСУР, ФДО, 2012 (доступ из личного кабинета студента) . (доступ из личного кабинета студента) .

7.5. Современные профессиональные базы данных и информационные справочные системы

При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Общие требования к материально-техническому и программному обеспечению дисциплины

Учебные аудитории для проведения занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, Лаборатория учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Веб-камера 6 шт.;
- Наушники с микрофоном 6 шт.;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- Google Chrome;
- Kaspersky Endpoint Security для Windows;
- LibreOffice;
- Microsoft Windows;

8.2. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы),

расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.3. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с **нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

- 1	<u> </u>	•			
	Названия разделов (тем)	Формируемые	Форы	мы контроля	Оценочные материалы (ОМ)
	дисциплины	компетенции	Ψ Opi	мы контроли	Odeno mbie marephasibi (Oivi)

1 Механика	ОПК-1	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ
2 Термодинамика и молекулярная физика	ОПК-1	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
3 Электростатика и магнетизм	ОПК-1	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

дисциплине

		ований к степени сформированности				
Оценка	Баллы за ОМ	планируемых результатов обучения				
		знать	уметь	владеть		
2	< 60% от	отсутствие знаний	отсутствие	отсутствие		
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или		
	суммы баллов	знания	частично	фрагментарные		
			освоенное	применение		
			умение	навыков		
3	от 60% до	общие, но не	в целом успешно,	в целом		
(удовлетворительно)	69% от	структурированные	но не	успешное, но не		
	максимальной	знания	систематически	систематическое		
	суммы баллов		осуществляемое	применение		
			умение	навыков		

4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% ot	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

Оценка	Формулировка требований к степени компетенции		
2	Не имеет необходимых представлений о проверяемом материале		
(неудовлетворительно)	или		
	Знать на уровне ориентирования, представлений. Обучающийся знает		
	основные признаки или термины изучаемого элемента содержания, их		
	отнесенность к определенной науке, отрасли или объектам, узнает в		
	текстах, изображениях или схемах и знает, к каким источникам нужно		
	обращаться для более детального его усвоения.		
3	Знать и уметь на репродуктивном уровне. Обучающихся знает		
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно		
	воспроизводит свои знания устно, письменно или в демонстрируемых		
	действиях.		
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на		
	репродуктивном уровне, указывать на особенности и взаимосвязи		
	изученных объектов, на их достоинства, ограничения, историю и		
	перспективы развития и особенности для разных объектов усвоения.		
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает		
	изученный элемент содержания системно, произвольно и доказательно		
	воспроизводит свои знания устно, письменно или в демонстрируемых		
	действиях, учитывая и указывая связи и зависимости между этим		
	элементом и другими элементами содержания дисциплины, его		
	значимость в содержании дисциплины.		

9.1.1. Примерный перечень тестовых заданий

- 1. Точка движется из центра спирали с равномерно убывающей скоростью. При этом величина полного ускорения точки ...
 - а) уменьшается
 - б) увеличивается
 - в) не изменяется
 - г) равна нулю
- 2. На абсолютно твердое тело действует постоянный момент сил. Какие из перечисленных ниже величин изменяются по линейному закону?
 - а) угловая скорость и угловое ускорение
 - б) момент инерции и момент импульса
 - в) угловая скорость и момент инерции
 - г) угловая скорость и момент импульса
- 3. Величина момента импульса тела изменяется с течением времени по закону L=t(t+2) (в единицах СИ). Если в момент времени 2 с угловое ускорение составляет 3 рад/ c^2 , то момент инерции тела (в единицах СИ) равен...

- a) 2
- б) 1
- в) 0.5
- г) 4
- 4. На концах невесомого стержня закреплены два маленьких массивных шарика. Стержень может вращаться в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Стержень раскрутили до угловой скорости ω. Под действием трения стержень остановился, при этом выделилось 4 Дж теплоты. Если стержень раскрутить до угловой скорости ω' = ω/2, то при остановке стержня выделится количество теплоты (в Дж), равное ...
 - a) 2
 - б) 1
 - в) 0.5
 - г) 4
- 5. Тепловая машина работает по циклу Карно. Если температуру нагревателя и холодильника уменьшить на одинаковую величину ΔT , то КПД цикла ...
 - а) увеличится
 - б) не изменится
 - в) уменьшится
 - г) для ответа недостаточно данных
- 6. Во сколько раз увеличится среднеквадратическая скорость молекул идеального газа при повышении абсолютной температуры в 4 раза?
 - а) не изменится
 - б) 0.5
 - в) 2
 - r) 4
- 7. От какой из приведенных ниже величин, характеризующих молекулы, зависит давление идеального газа?
 - а) силы притяжения между молекулами
 - б) кинетической энергии молекул
 - в) силы отталкивания между молекулами
 - г) потенциальной энергии взаимодействия молекул
- 8. Для изолированной системы в равновесном состоянии энтропия системы...
 - а) минимальна
 - б) максимальна
 - в) имеет среднее арифметическое значение
 - г) имеет отрицательное значение
- 9. Вектор напряженности электростатического поля, созданного между обкладками плоского конденсатора направлен...
 - а) от отрицательной обкладки к положительной
 - б) в сторону возрастания потенциала
 - в) параллельно обкладкам
 - г) в сторону убывания потенциала
- 10. Точечный заряд +q находится в центре сферической поверхности. Если добавить заряд q внутрь сферической поверхности, то поток вектора напряженности электрического поля через поверхность сферы...
 - а) увеличится
 - б) уменьшится
 - в) равен нулю
 - г) не изменится

9.1.2. Перечень экзаменационных вопросов

Приведены примеры типовых заданий из банка экзаменационных тестов, составленных по пройденным разделам дисциплины.

- 1. Какое из предложенных ниже определений характеризует нормальную составляющую линейного ускорения?
 - 1) Это физическая векторная величина, характеризующая быстроту изменения скорости

по величине

- 2) Это физическая векторная величина, характеризующая быстроту изменения скорости по величине и направлению
- 3) Это физическая векторная величина, характеризующая быстроту изменения скорости по направлению
- 2. Точка М движется по окружности с постоянным тангенциальным ускорением. Если проекция тангенциального ускорения на направление скорости отрицательна, то величина нормального ускорения...
 - 1) не изменяется
 - 2) увеличивается
 - 3) уменьшается
- 3. Сила это...Выберите правильное окончание наиболее общего определения силы.
 - 1)...физическая величина, численно равная произведению массы тела на его ускорение
 - 2)...общая количественная мера воздействия одного тела на другое
 - 3)...физическая величина, определяющая скорость движения тела
 - 4)...физическая величина, численно равная быстроте изменения импульса тела.
- 4. Какое из приведенных ниже выражений является формулировкой третьего закона Ньютона?
 - 1) Взаимодействующие тела действуют друг на друга с одинаковыми по величине, но противоположными по направлению силами
 - 2) тело (или система тел) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие других тел не выведет его из состояния покоя
 - 3) быстрота изменения импульса данной системы тел прямо пропорциональна векторной сумме всех внешних сил, приложенных к этой системе
 - 4) ускорение данной системы тел прямо пропорционально векторной сумме всех сил, приложенных к этой системе, и обратно пропорционально суммарной массе всей системы
- 5. В каких механических системах выполняется закон сохранения момента импульса?
 - 1) В замкнутых
 - 2) консервативных
 - 3) в любых
- 6. Точечный заряд +q находится в центре сферической поверхности. Если добавить заряд q внутрь сферической поверхности, то поток вектора напряженности электрического поля через поверхность сферы...
 - 1) увеличится
 - 2) уменьшится
 - 4) равен нулю
 - 4) не изменится
- 7. Магнитный поток сквозь катушку, состоящую из 10 витков, изменяется по закону Φ =t(2-t) мВб. Чему равна ЭДС индукции, возникающая в катушке в момент времени t=3 c? Ответ представить в миливольтах.
 - 1) 40
 - 2) 10
 - 3) 20
 - 4) 30
- 8. Заряженная частица влетает в однородное магнитное поле перпендикулярно магнитным силовым линиям. Траекторией движения частицы является...
 - 1) прямая
 - 2) парабола
 - 3) спираль
 - 4) окружность
- 9. Как связаны между собой амплитуда А и энергия W, переносимая волной?
 - 1) Энергия (W) пропорциональна амплитуде (A) в 4-ой степени
 - 2) Энергия (W) пропорциональна амплитуде (A)
 - 3) Энергия (W) пропорциональна квадрату амплитуды (A)
 - 4) Энергия (W) пропорциональна амплитуде (A) в 3-ой степени
- 10. Ёмкость колебательного контура радиопередатчика уменьшили с 1000 до 250 пФ. Как при этом изменилась длина излучаемых электромагнитных волн?

- 1) уменьшилась в 4 раза
- 2) уменьшилась в 2 раза
- 3) увеличилась в 4 раза
- 4) не изменилась

9.1.3. Примерный перечень вариантов (заданий) контрольных работ

- 1. Точка движется из центра спирали с равномерно убывающей скоростью. При этом величина полного ускорения точки ...
 - 1) уменьшается
 - 2) увеличивается
 - 3) не изменяется
 - 4)равна нулю
- 2. На абсолютно твердое тело действует постоянный момент сил. Какие из перечисленных ниже величин изменяются по линейному закону?
 - 1) угловая скорость и угловое ускорение
 - 2) момент инерции и момент импульса
 - 3) угловая скорость и момент инерции
 - 4) угловая скорость и момент импульса
- 3. Величина момента импульса тела изменяется с течением времени по закону L=t(t+2) (в единицах СИ). Если в момент времени 2 с угловое ускорение составляет 3 рад/с^2, то момент инерции тела (в единицах СИ) равен ...
 - 1) 2
 - 2) 1
 - 2) 0,5
 - 4) 4
- 4. На концах невесомого стержня закреплены два маленьких массивных шарика. Стержень может вращаться в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Стержень раскрутили до угловой скорости ω. Под действием трения стержень остановился, при этом выделилось 4 Дж теплоты. Если стержень раскрутить до угловой скорости ω' = ω/2, то при остановке стержня выделится количество теплоты (в Дж), равное ...
 - 1) 0,5
 - 2) 2
 - 2) 1
 - 4) 4
- 5. Тепловая машина работает по циклу Карно. Если температуру нагревателя и холодильника уменьшить на одинаковую величину ΔT , то КПД цикла ...
 - 1) увеличится
 - 2) не изменится
 - 3) уменьшится
 - 4) для ответа недостаточно данных
- 6. Во сколько раз увеличится среднеквадратическая скорость молекул идеального газа при повышении абсолютной температуры в 4 раза?
 - 1) не изменится
 - 2) 0,5
 - 3) 2
 - 4) 4
- 7. От какой из приведенных ниже величин, характеризующих молекулы, зависит давление идеального газа?
 - 1) силы притяжения между молекулами
 - 2) кинетической энергии молекул
 - 3) силы отталкивания между молекулами
 - 4) потенциальной энергии взаимодействия молекул
- 8. Для изолированной системы в равновесном состоянии энтропия системы...
 - 1) минимальна
 - 2) максимальна
 - 3) имеет среднее арифметическое значение

- 4) имеет отрицательное значение
- 9. Вектор напряженности электростатического поля, созданного между обкладками плоского конденсатора направлен...
 - 1) от отрицательной обкладки к положительной
 - 2) в сторону возрастания потенциала
 - 3) параллельно обкладкам
 - 4) в сторону убывания потенциала
- 10. Заряженная частица влетает в однородное магнитное поле перпендикулярно магнитным силовым линиям. Траекторией движения частицы является...
 - 1) прямая
 - 2) парабола
 - 3) спираль
 - 4) окружность

9.1.4. Темы лабораторных работ

- 1. Изучение вращательного и поступательного движений на машине Атвуда
- 2. Определение удельного заряда электрона методом магнетрона

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

- 3	zeomenare v mani ode pozza u mizwindez						
	Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки				
	Категории обучающихся	материалов	результатов обучения				
	С нарушениями слуха	Тесты, письменные	Преимущественно письменная				
		самостоятельные работы, вопросы	проверка				
		к зачету, контрольные работы					

С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно
двигательного аппарата	контрольные работы, письменные	дистанционными методами
	самостоятельные работы, вопросы	
	к зачету	
С ограничениями по	Тесты, письменные	Преимущественно проверка
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися
показаниям	к зачету, контрольные работы,	исходя из состояния
	устные ответы	обучающегося на момент
		проверки

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры Физики протокол № 106 от «_8_» _12__ 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. РЭТЭМ	В.И. Туев	Согласовано, a755e75e-6728-43c8- b7c9-755f5cd688d8
Заведующий обеспечивающей каф. Физики	Е.М. Окс	Согласовано, 99053dca-2aae-4b14- 9bb4-8377fd62b902
Начальник учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Доцент, каф. РЭТЭМ	Н.Н. Несмелова	Согласовано, eebb9cff-fbf0-4a31- a395-8ca66c97e745
Профессор, каф. физики	А.С. Климов	Согласовано, 3ad9472f-31be-4051- a091-9e227bbc551b
РАЗРАБОТАНО:		
Доцент, каф. физики	А.А. Зенин	Разработано, 589731db-f1ab-40b5- 953d-e7e91edcb958