МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	Проректор по уче	бной	работе
		П.Е.	Троян
>	>	20	Г

УТВЕРЖЛАЮ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теория вероятностей и математическая статистика

Уровень основной образовательной программы бакалавриат								
Направление(я) подготовки (специальность) 27.03.05 "Инноватика"								
Профиль "Управление инновациями в электронной технике"								
Форма обучения очная								
Факультет Инновационных технологий (ФИТ)								

Семестр 5

Учебный план набора 2016 года и последующих лет

Распределение рабочего времени:

Курс

3

Кафедра Управления инновациями (УИ)

№	Виды учебной работы	Семестр 1	Семестр 2	Семестр 3	Семестр 4	Семестр 5	Семестр 6	Семестр 7	Семестр 8	Всего	Единицы
1.	Лекции					18				18	часов
2.	Лабораторные работы					18				18	часов
3.	Практические занятия					36				36	часов
4.	Курсовой проект/работа (КРС) (аудиторная)										часов
5.	Всего аудиторных занятий (Сумма 1-4)					72				72	часов
6.	Из них в интерактивной форме										часов
7.	Самостоятельная работа студентов (СРС)					36				36	часов
8.	Всего (без экзамена) (Сумма 5,7)					108				108	часов
9.	Самост. работа на подготовку, сдачу экзамена					36				36	часов
10.	Общая трудоемкость (Сумма 8,9)					144				144	часов
	(в зачетных единицах)					4				4	ЗЕТ

Экзамен 5 семестр

Диф. зачет не предусмотрено

Зачет не предусмотрено

Рассмотрена	и одо	брена на з	васедании	кафедры
протокол №	288	от «18	»11	20 <u>16</u> г.

Лист согласований

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 27.03.05 "Инноватика", утвержденного 11.08.2016г., № 1006

рассмотрена и утверждена на заседании кафедры 18 н	оября 2016 г., протокол № 288
Разработчик: профессор кафедры математик	и Л.И. Магазинников
Зав. кафедрой математики	А.Л. Магазинникова
Рабочая программа согласована с факуль кафедрами направления подг	
Декан ФИТ	Г.Н. Нариманова
Зав. профилирующей кафедрой УИ	Г.Н. Нариманова
Зав. выпускающей кафедрой УИ	Г.Н. Нариманова
Эксперты:	
профессор кафедры математики ТУСУР	А.А. Ельцов
доцент кафедры УИ ТУСУР	П.Н. Дробот

1. Цели и задачи дисциплины, ее место в учебном процессе

Целями освоения дисциплины "Теория вероятностей и математическая статистика" являются: изучение статистических свойств случайных событий и величин, знакомство с основными методами решения вероятностных задач, знакомство с основными методами многомерного статистического анализа; овладение методами статистической обработки результатов наблюдений, измерений и моделирования, подготовка к применению статистических методов в анализе и синтезе прикладных задач.

2. Место дисциплины в структуре ООП

Курс относится к вариативной части Б1.В обязательных дисциплин. Для его успешного освоения необходимы знания курса математики, твердое владение математическим аппаратом. Освоение теории вероятностей необходимо для дальнейшего изучения математической статистики. Знание теории вероятностей может существенно помочь при построении и анализе различных математических моделей, возникающих в физике, химии, биологии, в технике. Кроме того, методы теории вероятностей широко применяются в целом ряде дисциплин профессионального цикла, в учебно-исследовательской и научно-исследовательской работе, что подчеркивает тесную связь этих разделов математики с окружающим миром, как на стадии введения математических понятий, так и на стадии использования полученных результатов.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины.

Выпускник должен обладать следующими компетенциями:

 ΠK -10 — способностью планировать необходимый эксперимент, получить адекватную модель и исследовать ее.

В результате освоения дисциплины студент должен:

Знать: определения и свойства основных объектов изучения теории вероятностей, а также формулировки наиболее важных утверждений, методы их доказательств, возможные сферы приложений.

Уметь: решать задачи вычислительного и теоретического характера в области теории вероятностей, устанавливать взаимосвязи между вводимыми понятиям, доказывать как известные утверждения, так и родственные им новые.

Владеть: математическим аппаратом теории вероятностей в теоретических и экспериментальных инновационных исследованиях.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетные единицы.

Вид учебной работы	D	Семестры			
•	Всего часов	5			
Аудиторные занятия (всего)	72	72			
В том числе:	-				
Лекции	18	18			
Лабораторные работы (ЛР)	18	18			
Практические занятия (ПЗ)	24	24			
Семинары (С)	-	-			
Коллоквиумы (К)	6	6			
Курсовой проект/(работа) (аудиторная нагрузка)	-	-			
Другие виды аудиторной работы					
Контрольные работы	6	6			
Самостоятельная работа (всего)	36	36			
В том числе:					
Курсовой проект (работа) (самостоятельная работа)					
Расчетно-графические работы					
Реферат					
Другие виды самостоятельной работы					
Изучение теоретического материала	10	10			
Подготовка к коллоквиуму	10	10			
Выполнение текущих домашних заданий	8	8			
Подготовка к контрольным работам	8	8			
Вид промежуточной аттестации (экзамен)	36	36			
Общая трудоемкость час	144	144			
Зачетные Единицы Трудоемкости	4	4			

5. Содержание дисциплины

5.1. Разделы дисциплин и виды занятий

№ п/п	Наименование раздела дисциплины	Лекции	Лаб. занятия.	Практич. занятия.	Самост. рабо- та студента	Всего час. (без экзам)	Формируемые компетенции (ОК, ПК)
1.	Случайные события. Вероятность	2	4	4	4	14	ПК-10
2.	Основные теоремы теории вероятностей	2	4	4	4	14	ПК-10
3.	Повторение опытов	2		4	4	10	ПК-10
4.	Случайные величины и их законы рас-	2		4	4	10	ПК-10
	пределения						
5.	Некоторые законы распределения слу-	2	4	4	4	14	ПК-10
	чайных величин						
6.	Системы случайных величин	2		4	4	10	ПК-10
7.	Предельные теоремы теории вероятно-	2		4	4	10	ПК-10
	стей						
8.	Элементы математической статистики	2	6	4	4	16	ПК-10
9.	Обработка опытов	2		4	4	10	ПК-10

5.2. Содержание разделов дисциплины (по лекциям)

3.2.	содержание раз	вделов дисциплины (по лекциям)	1	
№ п/ п	Наименова- ние разделов	Содержание разделов	Тру- доем- кость (час.)	Формируемые компетенции (ОК, ПК)
1.	Случайные события. Вероятность.	Понятие случайного события. Классификация событий. Действия над событиями. Понятие вероятности события. Статистическое, классическое, геометрическое и аксиоматическое определение вероятности.	2	ПК-10
2.	Основные теоремы теории вероятностей.	Условные вероятности. Зависимые и независимые события. Теорема сложения вероятностей. Теорема умножения вероятностей. Формула полной вероятности. Формула Байеса	2	ПК-10
3.	Повторение опытов.	Схема испытаний Бернулли. Формула Бернулли. Наивероятнейшее число появления событий в схеме Бернулли. Общая теорема о повторении опытов. Производящая функция. Локальная и интегральная теоремы Муавра — Лапласа. Простейший (пуассоновский) поток событий. Формула Пуассона.	2	ПК-10
4.	Случайные величины и законы их распределения.	Случайная величина и её закон распределения. Одномерные дискретные случайные величины. Ряд распределения. Функция распределения одномерной случайной величины и её свойства. Функция распределения дискретной случайной величины и её график. Плотность распределения одномерной случайной величины и её свойства. Числовые характеристики случайных величин. Математическое ожидание дискретной случайной величины и его смысл. Математическое ожидание непрерывной случайной величины. Мода, медиана, квантиль случайной величины. Дисперсия случайной величины. Моменты случайной величины. Функция одного случайного аргумента. Математическое ожидание функции одного случайного аргументов. Характеристическая и кумулянтная функции. Примеры характеристических функций. Взаимная однозначность соответствия между распределениями и характеристическими функциями. Формула обращения (для функций распределения и для плотностей, без доказательства). Характеристическая функция суммы независимых случайных величин. Свойства характеристических функций.	2	ПК-10
5.	Некоторые законы распределения случайных величин.	Биномиальное распределение и его числовые характеристики. Распределение Пуассона. Его ряд распределения, характеристическая и кумулянтная функция, числовые характеристики. Показательное распределение и его числовые характеристики. Нормальное распределение и его числовые характеристики. График плотности нормального распре-	2	ПК-10

		деления. Вычисление вероятности попадания в заданный интервал для нормальной величины. Пра-		
		вило трёх сигм.		
6.	Системы случайных величин.	Многомерные случайные величины. Понятие двумерной дискретной случайной величины и её матрица распределения. Свойства матрицы распределения. Функция распределения многомерной случайной величины и её свойства. Плотность распределения системы случайных величин и её свойства. Законы распределения отдельных величин, входящих в систему. Условные плотности распределения. Независимые и зависимые случайные величины. Теорема о функции распределения системы независимых случайных величин. Условные законы распределения. Теорема о плотности распределения системы независимых случайных величин. Функция нескольких случайных аргументов. Математическое ожидание функции нескольких случайных аргументов. Характеристики связи двух случайных величин. Ковариация и коэффициент корреляции. Необходимое условие независимости случайных величин. Свойства коэффициента корреляции. Понятие рег	2	ПК-10
7.	Предельные теоремы теории вероятно-	рессии. Предельные теоремы теории вероятностей. Неравенство Чебышева. Понятие сходимости по вероятности. Теоремы Бернулли и Пуассона. Централь-	2	ПК-10
0	стей.	ная предельная теорема.	2	ПУ 10
8.	Элементы математической статистики.	Основные задачи математической статистики. Понятие выборки. Числовые характеристики выборки. Простейшие способы обработки выборки. Статистическая функция распределения. Эмпирическая функция распределения.	2	ПК-10
9.	Обработка опытов.	Выборочные параметры распределения. Понятие оценки числового параметра. Требования к оценке. Оценка математического ожидания и дисперсии. Понятие о доверительном интервале. Распределение Стьюдента. х-квадрат распределение.	2	ПК-10

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

№	Наименование обеспечивающими	№ № разделов данной дисциплины из табл.5.1,										
Π/	(предыдущими) и обеспечиваемыми	для которых необходимо изучение обеспечи-										
П	(последующими) дисциплинами		ва	емы	х (по	следу	ющи	х) д	исц	ипл	ИН	
		1	2	3	4	5	6	7	8	9	10	11
	Обеспечивающие дисциплины											
1.	Математика	+	+	+	+	+	+	+	+	+		
2.	Физика					+			+	+		
3.	Экономическая теория					+			+	+		
	Последующие дисциплины											
1.	Алгоритмы решения нестандартных	+	+	+	+	+	+	+	+	+		
	задач											
2.	Бизнес-планирование				+	+	+			+		
3.	Глобальные и локальные компьютер-								+	+		
	ные сети											
4.	Автоматизация бизнес-процессов и					+			+	+		
	производств											
5.	Управление инновационной деятель-		+		+				+	+		
	ностью											
6.	Проектирование цифровых систем			+	+	+	+	+	+	+		
	управления											
7.	Научно-исследовательская деятель-	+	+	+	+	+	+	+	+	+		
	ность											

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень	Виды занятий					Формы контроля
компетенций	Л	Лаб	Пр.	КР/КП	CPC	
ПК-10	+	+	+		+	Ответ на практическом занятии. Коллокви-
						ум. Контрольная работа. Экзамен.

 $[\]Pi$ – лекция, Πp – практические и семинарские занятия, $\Pi a \delta$ – лабораторные работы, $KP/K\Pi$ – курсовая работа/проект, CPC – самостоятельная работа студента

6. Методы и формы организации обучения

Технологии интерактивного обучения при разных формах занятий в часах – не предусмотрено

7. Лабораторный практикум

$N_{\underline{0}}$	№ раздела	Наименование лабораторных работ	Трудо-	Компетенции
Π/Π	дисциплины		емкость	ОК
	из табл. 5.1		(час.)	
1	1	Классическое и геометрическое определения веро-	4	ПК-10
		ятности		
2	2	Теоремы сложения и умножения вероятностей	4	ПК-10
3	5	Числовые характеристики выборки. Гистограммы	4	ПК-10
4	8	Проверка статистических гипотез	6	ПК-10

8. Практические занятия

№ п/п	№ раздела дис- циплины из табл. 5.1	Тематика практических занятий (семинаров)	Трудо- емкость (час.)	Компетенции ОК, ПК
1.	1	Элементы комбинаторики. Классическое определение вероятности. Различные определение вероятности.	2	ПК-10
2.	1,2	Действия над событиями. Сложение и умножение вероятностей. Зависимые и независимые события. Основные теоремы теории вероятностей.	2	ПК-10
3.	2	Формула полной вероятности. Формула Байеса.	2	ПК-10
4.	3	Последовательность независимых опытов.	2	ПК-10
5.	1-3	Контрольная работа по теме «Действия над событиями. Основные теоремы теории вероятностей»	2	ПК-10
6.	4	Ряд распределения, функция распределения и плотность распределения одномерной случайной величины.	2	ПК-10
7.	4	Числовые характеристики случайных величин: математическое ожидание, дисперсия и среднеквадратическое отклонение, моменты, коэффициент асимметрии, коэффициент скошенности.	2	ПК-10
8.	4	Контрольная работа по теме «Случайные величины и их числовые характеристики»	2	ПК-10
9.	5	Виды распределений: равномерное, нормальное, показательное.	2	ПК-10
10.	5	Характеристическая функция. Кумулянтная функция.	2	ПК-10
11.	6	Функция распределения и плотность распределения многомерной случайной величины и ее характеристики.	2	ПК-10
12.	6	Условные плотности распределения. Линии регрессии. Коэффициент корреляции.	2	ПК-10
13.	7	Закон больших чисел. Неравенство Маркова. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Теорема Пуассона.	2	ПК-10
14.	8-9	Гистограмма и полигон. Эмпирическая функция распределения. Выборочные математическое ожидание, дисперсия и среднеквадратическое отклонение. Проверка по критерию Пирсона гипотезы о нормальном распределении. Построение доверительных интервалов.	2	ПК-10
15.	1-9	Итоговая контрольная работа по курсу	2	ПК-10
16.	1-9	Коллоквиум	6	ПК-10

9. Самостоятельная работа

№	№ раздела	ьная работа Тематика самостоятельной работы	Трудо-	Компе-	Контроль выполнения
Π/Π	дисцип-	(детализация)	ем-	тенции ОК,	работы (Опрос, тест,
	лины из табл. 5.1		кость (час.)	ПК	дом.задание, и т.д)
1.	1	Изучение лекционного материала. Подготов- ка к практическому занятию. Самостоятельно: • Элементы комбинаторики • Аксиоматическое определение веро- ятности	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Лабораторная работа. Коллоквиум.
2.	2	Изучение лекционного материала. Подготов- ка к практическому занятию. Выполнение текущего домашнего задания.	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Лабораторная работа. Коллоквиум.
3.	3	Изучение лекционного материала. Подготовка к практическому занятию. Выполнение текущего домашнего задания. Подготовка к контрольной работе. Самостоятельно: Поток событий Элементы теории массового обслуживания	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Коллоквиум.
4.	4	Изучение лекционного материала. Подготов- ка к практическому занятию. Выполнение текущего домашнего задания.	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Коллоквиум.
5.	5	Изучение лекционного материала. Подготов- ка к практическому занятию. Выполнение текущего домашнего задания. Самостоятельно: • Линейное преобразование нормаль- ной случайной величины. • Композиция нормальных законов распределения.	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Лабораторная работа. Коллоквиум.
6.	6	Изучение лекционного материала. Подготов- ка к практическому занятию. Выполнение текущего домашнего задания.	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Коллоквиум.
7.	7	Изучение лекционного материала. Подготовка к практическому занятию. Выполнение текущего домашнего задания. Самостоятельно: Сходимости на множестве случайных величин. Сходимость по вероятности.	4	ПК-10	Опрос на практическом занятии. Контрольная работа. Коллоквиум.
8.	8	Изучение лекционного материала. Подготов- ка к практическому занятию. Выполнение текущего домашнего задания.	4	ПК-10	Опрос на практическом занятии. Лабораторная работа.
9.	9	Изучение лекционного материала. Подготовка к практическому занятию. Выполнение текущего домашнего задания. Самостоятельно: • Понятие о статистической проверке гипотез. Взаимосвязь физики, математики и программирования в обработке опытов: «Сглаживание экспериментальных зависимостей пометоду наименьших квадратов»	4	ПК-10	Опрос на практическом занятии.
10.	1-9	Подготовка и сдача экзамена	36	ПК-10	Оценка на экзамене

10. Примерная тематика курсовых проектов (работ) не предусмотрено

11. Рейтинговая система для оценки успеваемости студентов

Таблица 11.1 Балльные оценки для элементов контроля.

Элементы учебной дея- тельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
Премиальные баллы	5	5		10
Контрольные работы на практических занятиях	20	20	10	50
Коллоквиум			10	10
Итого максимум за период:	25	25	20	70
Сдача экзамена (максимум)			30	30
Нарастающим итогом	25	50	70	100

Таблица 11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (wamayya)	85 – 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 – 84	С (хорошо)
(зачтено)	70 - 74	D (vitabilathanyttail va)
3 (удовлетворительно)	65 – 69	D (удовлетворительно)
(зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины:

12.1. Основная литература

- 1. Магазинников Л.И. Высшая математика IV. Теория вероятностей: учебное пособие для вузов / Л. И. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2012. 151 с. https://edu.tusur.ru/publications/2248
- 2. Болотюк В.А. Практикум и индивидуальные задания по курсу теории вероятностей (типовые расчеты) : учебное пособие / В.А. Болотюк, Л.А. Болотюк, А.Г. Гринь [и др.] СПб.: Лань, 2010. 288 с. http://e.lanbook.com/books/element.php?pl1_id=534
- 3. Бородин, А.Н. Элементарный курс теории вероятностей и математической статистики: учебное пособие. СПб.: Лань, 2011. 255 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2026

12.2. Дополнительная литература

- 1. Магазинников Л.И. Математика для гуманитарных, экологических и экономико-юридических специальностей: учебное пособие / Л.И. Магазинников, Ю.П. Шевелев. Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007 **Ч. 2**. 244 с. Экземпляры всего: 101.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика: учебное пособие для бакалавров / В. Е. Гмурман. 12-е изд. М.: Юрайт, 2013. 480 с. (7 экз.)
- 3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для бакалавров / В. Е. Гмурман. — 11-е изд., перераб. и доп.— М.: Юрайт, 2013. — 405 с. (6 экз.)

12.3. Учебно-методические пособия

- 1. Болотюк В.А. Практикум и индивидуальные задания по курсу теории вероятностей (типовые расчеты): учебное пособие / В.А. Болотюк, Л.А. Болотюк, А.Г. Гринь [и др.].— СПб.: Лань, 2010. 288 с. http://e.lanbook.com/books/element.php?pl1_id=534
- 2. Магазинников Л.И. Высшая математика IV. Теория вероятностей: учебное пособие для вузов / Л. И. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2012. 151 с. https://edu.tusur.ru/publications/2248
- 3. Лабораторные работы по математике: Методические указания / Магазинников А. Л., Ерохина $A.\Pi.-2016.$ 25 с. https://edu.tusur.ru/publications/6081
- 4. Лабораторный практикум по математике: Руководство к выполнению лабораторных работ / Магазинников А. Л. -2016. 14 с. https://edu.tusur.ru/publications/6076

12.4. <u>Программное обеспечение.</u> Система дистанционного образования MOODLE для сопровождения самостоятельной работы студентов (методические материалы: текстовые, аудио и видеофайлы, индивидуальные задания, тесты и т.д.); Mathcad; AdvancedGrapher

12.5. Базы данных, информационно-справочные и поисковые системы

- Ссылки с сайта кафедры на математические ресурсы и он-лайн тренажёры;
- Базы данных: http://lib.tusur.ru/category/bd/
- Hayчно-образовательный портал ТУСУРа: https://edu.tusur.ru/
- Электронно-библиотечная система «Лань», доступ по IP-адресам ТУСУРа, адрес для
- работы: http://e.lanbook.com/
- Поисковые системы Google, Yandex

13. Материально-техническое обеспечение дисциплины

Возможность работать в компьютерном классе из расчёта один компьютер на студента. Лекционные аудитории, оснащённые техникой для мультимедийных презентаций.

14. Фонд оценочных средств

Фонд оценочных средств приведен в приложении 1.

15. Методические рекомендации по организации изучения дисциплины

Без рекомендаций.

Приложение 1

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ				
Проректор по учебной работе				
	_ П. Е. Троя	H		
«»_	20	Γ.		

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Теория вероятностей и математическая статистика

Уровень основ	ной образовательной программы бакалавриат
Направление(я) подготовки (специальность) 27.03.05 "Инноватика"
Профиль(и) "	Управление инновациями в электронной технике"
Форма обучени	я очная
Факультет Инг	новационных технологий (ФИТ)
Кафедра Упр	авление инновациями (УИ)
Курс 3	Семестр 5
	Учебный план набора 2016 года и последующих лет
Экзамен 5 семе	естр

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «Математика» и представляет собой совокупность контрольно-измерительных материалов (КИМ) (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетен- ции	Этапы формирования компетенции
ПК-10	Выпускник должен обладать способностью планировать необходимый эксперимент, получить адекватную модель и исследовать ее.	Знать: определения и свойства основных объектов изучения теории вероятностей, а также формулировки наиболее важных утверждений, методы их доказательств, возможные сферы приложений. Уметь: решать задачи вычислительного и теоретического характера в области теории вероятностей, устанавливать взаимосвязи между вводимыми понятиям, доказывать как известные утверждения, так и родственные им новые. Владеть: математическим аппаратом теории вероятностей в теоретических и экспериментальных инновационных исследованиях.

2. Реализация компетенций

Для формирования компетенции необходимо осуществить ряд этапов, содержание которых детализировано в таблице 2.

ПК-10: Выпускник должен обладать способностью планировать необходимый эксперимент, получить адекватную модель и исследовать ее.

Таблица 2 - Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Основные понятия, методы и теоремы теории вероятностей и математической статистики, необходимые для решения поставленных математических задач	Выбирать, обосновывать и применять различные методы теории вероятностей для решения поставленных математических задач, проанализировать полученные результаты и сделать обоснованные выводы	Владеет способно- стью к обобщению, анализу, воспри- ятию информации, постановке цели и выбору путей реше- ния математических задач, навыками примене- ния систем теоретико- вероятностных и математико- статистических подходов
Виды занятий	- лекции;- практические занятия;- лабораторные занятия;- групповые консультации	- практические занятия; - выполнение домашнего задания; - самостоятельная работа студентов	- практические занятия; - лабораторные занятия; - групповые консультации; - самостоятельная работа студентов
Используемые средства оценивания	- контрольная работа; - выполнение домашнего задания; - коллоквиум; - экзамен	- контрольная работа; - оформление домашнего задания; - защита индивидуального задания; - конспект самостоятельной работы; - экзамен	- ответ на практическом занятии; - контрольная работа; - экзамен

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3- Показатели и характеристики критериев оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Обладает знаниями основных понятий на уровне определений и взаимосвязей между ними в пределах изучаемой области.	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования.	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает знаниями основных понятий на уровне названий и обозначений и стандартных алгоритмов	Обладает основными умениями, требуемыми для выполнения простых задач.	Работает при пря- мом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	-ответ по вопросу или заданию аргументированный, логически выстроенный, полный; -демонстрирует знание основного содержания дисциплины и его элементов в соответствии с прослушанным лекционным курсом и с учебной литературой; -выводы доказательны, -приводит примеры;	-свободно применяет методы решения задач в незнакомых ситуациях; -умеет математически выражать и аргументированно доказывать утверждения теории вероятностей;	-свободно владеет основными понятиями, законами и теорией, необходимыми для объяснения явлений, закономерностей и т.д.; -владеет умением устанавливать межпредметные и внутрипредметные связи

	демонстрирует способность к анализу и сопоставлению различных подходов к решению заявленной в вопросе или задании проблематики; математически обосновывает выбор метода и план решения задачи;		между событиями, объектами и явлениями;
Хорошо (ба- зовый уро- вень)	-обоснованно, но с ошибками, которые сам же и исправляет, излагает математический материал; -строит логически связанный ответ, используя принятую научную терминологию; -применяет в ответе общепринятую в науке знаково-символьную систему условных обозначений; -аргументирует выбор метода решения задачи	-применяет методы решения задач в незнакомых ситуациях; -умеет корректно выражать и аргументированно обосновывать положения предметной области знания	-критически осмысливает полученные знания; графически иллюстрирует задачу;
Удовлетвори- тельно (поро- говый уро- вень)	-излагает материал неполно и допускает неточности в определении понятий или формулировке правил; -суждения не глубокие и необоснованные; затрудняется привести свои примеры; -знает основные методы решения типовых задач	-умеет работать со справочной литературой; умеет выполнять все необходимые операции (действия); допускает ошибки; -умеет представлять результаты своей работы	-владеет терминологией предметной области знания; - способен корректно представить знания в математической форме

3. Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются следующие материалы:

- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:
 - 1. Контрольные работы
 - 2. Коллоквиум
 - 3. Лабораторные работы
 - 4. Самостоятельные работы
 - 5. Вопросы на экзамен

Контрольная работа

- 1. Контрольная работа по теме «Действия над событиями. Основные теоремы теории вероятностей»
- 2. Контрольная работа по теме «Случайные величины и их характеристики»
- 3. Итоговая контрольная работа

Примеры вариантов контрольных работ

Контрольная работа по теме «Действия над событиями. Основные теоремы теории вероятностей»

Вариант 1.1

- 1.1.1. Куб, все грани которого окрашены, распилен на 64 кубика одинакового размера, которые затем перемешаны. Найдите вероятность того, что случайно взятый кубик имеет две окрашенные грани.
- 1.1.2. На стеллаже в случайном порядке стоит 10 книг, причем 4 из них по математике .Случайно взяли три книги. Найдите вероятность того, что среди них окажется хотя бы одна по математике .
- 1.1.3. В коробке 20 лампочек, причем 4 из них рассчитаны на 220в, а 16 на 127в. Половина тех и других матовые. Случайно взяли 2 лампы. Найдите вероятность того, что они разного напряжения и обе матовые.
- 1.1.4. В спартакиаде участвуют 20 спортсменов: 12 лыжников и 8 конькобежцев. Вероятность выполнить норму лыжником равна 0,8, а конькобежцем 0,4. Случайно вызвали 2 спортсмена. Найдите вероятность того, что они оба выполнили норму.

Контрольная работа по теме «Случайные величины и их числовые характеристики»

Вариант 2.1

- 2.2.1. Вероятность того, что в библиотеке нужная студенту книга свободна, равна 0,3. Составьте ряд распределения числа библиотек, которые посетит студент, если в городе всего четыре библиотеки и все они имеют нужную ему книгу. Найдите функцию распределения, математическое ожидание и дисперсию этой случайной величины.
- 2.2.2. Дана функция распределения случайной величины X $F(x) = \begin{cases} 0, x \leq -1 \\ Ax^3 + B, -1 < x \leq 1 \\ 1, x > 1 \end{cases}$

Найдите A,B; M[X]; D[X].

Итоговая контрольная работа

Вариант 3.1

- 3.1.1. Дана плотность распределения случайной величины X:
- $\rho(x) = \begin{cases} 0, ecnu \ x \le 0; \\ \frac{1}{2}, ecnu \ 0 < x \le 1; \\ \frac{1}{3}x, ecnu \ 1 < x \le 2; \\ 0, ecnu \ x > 2. \end{cases}$

Событие А наступает с вероятностью 1/3, если и вероятностью 2/3, если $X \in (\frac{1}{2}; 2]$. Известно, что событие А наступило. Найдите вероятность того, что при этом $X \in [0; \frac{1}{2}]$.

- 3.1.2. По некоторой цели произведено три выстрела с вероятностью попадания 0,1; 0,2; 0,8 соответственно. При одном попадании цель будет разрушена с вероятностью 0,4, при двух с вероятностью -0,6, при трех -0.8. Цель оказалась разрушенной. Найдите математическое ожидание числа попаданий в цель. Ответ округлите до 0,1.
- 3.1.3. Найдите кумулянтную функцию $\varphi_x(t)$ случайная величины X, заданной плотностью распределения $\rho(x) = \frac{1}{\pi((x-1)^2+1)}$. Ограничиться случаем t>0.
- 3.1.4. Диаметр X отверстия имеет нормальное распределение с числовыми характеристиками: M[X]=5 мм, $\sigma[X]=0.2$ мм. Диаметр вала равен 4.9 мм. Найдите вероятность того, что вал войдет в отверстие.

Вопросы к коллоквиуму: формируются из списка вопросов на экзамен, приведенного ниже.

Темы лабораторных работ:

- 1. Классическое и геометрическое определения вероятности
- 2. Теоремы сложения и умножения вероятностей
- 3. Числовые характеристики выборки. Гистограммы
- 4. Проверка статистических гипотез

Выполнение домашнего задания

- 1. Комбинаторика.
- 2. Действия над событиями. Статистическое, классическое, геометрическое определение вероятности.
- 3. Основные теорема теории вероятностей.
- 4. Формула полной вероятности. Формула Байеса
- 5. Последовательность независимых опытов.
- 6. Дискретные и непрерывные случайные величины.
- 7. Числовые характеристики случайных величин.
- 8. Закон равномерного распределения. Показательное и нормальное распределения.
- 9. Характеристическая функция.
- 10. Двумерные случайные величины.
- 11. Предельные теоремы теории вероятностей.
- 12. Элементы математической статистики.
- 13. Построение доверительных интервалов для параметров распределения.

Темы для самостоятельной работы

- 1. Аксиоматическое определение вероятности.
- 2. Поток событий. Элементы теории массового обслуживания.
- 3. Функция одного случайного аргумента. Математическое ожидание функции одного случайного аргументов.
- 4. Линейное преобразование нормальной случайной величины. Композиция нормальных законов распределения.
- 5. Функция нескольких случайных аргументов. Математическое ожидание функции нескольких случайных аргументов. Понятие регрессии. Кривые регрессии.
- 6. Сходимости на множестве случайных величин. Сходимость по вероятности.
- 7. Понятие о статистической проверке гипотез. Взаимосвязь физики, математики и программирования в обработке опытов: «Сглаживание экспериментальных зависимостей по методу наименьших квадратов»

Темы курсового проекта: не предусмотрено

Вопросы на экзамен

- 1. Что называют опытом?
- 2. Что называют событием?
- 3. Какое событие называют достоверным в данном опыте?
- 4. Какое событие называют невозможным в данном опыте?
- 5. Какое событие называют случайным в данном опыте?
- 6. Какие события называют несовместными в данном опыте?
- 7. Какие события называют совместными в данном опыте?
- 8. Какие события считают равновозможными в данном опыте?
- 9. Что называют полной группой событий?
- 10. Что называют элементарным исходом?
- 11. Какие элементарные исходы называют благоприятствующими данному событию?
- 12. Что представляет собой полная группа событий при подбрасывании одной монеты?
- 13. Что представляет собой полная группа событий при подбрасывании двух монет?
- 14. Что называют вероятностью события?
- 15. Чему равна вероятность достоверного события?
- 16. Чему равна вероятность невозможного события?
- 17. В каких пределах заключена вероятность случайного события?
- 18. В каких пределах заключена вероятность любого события?
- 19. Какое определение вероятности называют классическим?
- 20. По какой формуле вычисляют число перестановок из п различных элементов?
- 21. По какой формуле вычисляют число размещений из n различных элементов по k элементов?
- 22. По какой формуле вычисляют число сочетаний из п элементов по к элементов?
- 23. По какой формуле вычисляют число перестановок из п элементов, если некоторые элементы повторяются?
- 24. Какой формулой определяется число размещений по к элементов с повторениями из п элементов ?
- 25. Какой формулой определяется число сочетаний с повторениями из n элементов по k элементов?
- 26. Что такое частота события?
- 27. Чему равна частота достоверного события?
- 28. Чему равна частота невозможного события?
- 29. В каких пределах заключена частота случайного события?
- 30. Чему равна частота суммы двух несовместных событий?

- 31. Какое определение вероятности называют статистическим?
- 32. Как определяется геометрическая вероятность в общем случае?
- 33. Как определяется геометрическая вероятность в пространственном случае?
- 34. Как определяется геометрическая вероятность в плоском случае?
- 35. Как определяется геометрическая вероятность в линейном случае?
- 36. Приведите собственный пример на геометрическую вероятность?
- 37. Что называют суммой, или объединением, двух событий?
- 38. Что называют произведением, или пересечением, двух событий?
- 39. Чему равна вероятность суммы двух событий? Сформулируйте теорему и докажите ее.
- 40. Чему равна вероятность суммы двух несовместных событий?
- 41. Сформулируйте теорему о вероятности суммы п несовместных событий.
- 42. Чему равна сумма вероятностей событий, образующих полную группу?
- 43. Чему равна сумма вероятностей противоположных событий?
- 44. Сформулируйте теорему о вероятности произведения двух событий.
- 45. Как определяется независимость двух событий?
- 46. Чему равна вероятность произведения двух независимых событий?
- 47. Сформулируйте теорему о вероятности произведения n событий.
- 48. Как определяется независимость n событий?
- 49. Чему равна вероятность произведения n независимых событий?
- 50. Как найти вероятность появления хотя бы одного из n независимых событий, имеющих одинаковые вероятности?
- 51. Выведите формулу полной вероятности.
- 52. Выведите формулы Байеса.
- 53. Что называют случайной величиной?
- 54. Какую величину называют дискретной случайной величиной?
- 55. Какую величину называют непрерывной случайной величиной?
- 56. Что называют законом распределения дискретной случайной величины?
- 57. Как задают закон распределения дискретной случайной величины, принимающей конечное множество значений?
- 58. Что называют многоугольником распределения?
- 59. Как определяется функция распределения случайной величины *X*?
- 60. Какие другие названия используют для функции распределения?
- 61. Как с помощью функции распределения вычислить вероятность того, что случайная величина X примет значения из интервала (a;b)?
- 62. Какими свойствами обладает функция распределения случайной величины X?
- 63. Какой вид имеет график функции распределения?
- 64. Чему равна вероятность того, что непрерывная случайная величина X примет одно, заданное определенное значение?
- 65. Является ли непрерывной функция распределения для дискретной случайной величины?
- 66. Что называют плотностью распределения случайной величины?
- 67. Как по-другому называют плотность распределения?
- 68. Как называют график плотности распределения?
- 69. Как с помощью плотности распределения найти вероятность попадания значений случайной величины X в интервал (a;b)?
- 70. Какие свойства имеет плотность распределения?
- 71. Как выражается функция распределения через плотность распределения?
- 72. Как выражается плотность распределения через функцию распределения?
- 73. Как определяется математическое ожидание дискретной случайной величины, принимающей конечное множество значений?
- 74. Какие другие названия используют для математического ожидания? Чем объясняются эти названия?

- 75. Как определяется математическое ожидание непрерывной случайной величины, все значения которой принадлежат бесконечному промежутку?
- 76. Каковы свойства математического ожидания случайной величины?
- 77. Какому условию должны удовлетворять случайные величины X и Y, чтобы выполнялось свойство M[XY]=M[X]M[Y]?
- 78. Что называют отклонением случайной величины от ее математического ожидания?
- 79. Чему равно математическое ожидание отклонения?
- 80. Как определяется дисперсия случайной величины?
- 81. Что характеризует дисперсия случайной величины?
- 82. По какой формуле можно вычислить дисперсию?
- 83. Свойства дисперсии случайной величины (с доказательством).
- 84. Запишите формулу для дисперсии дискретной случайной величины.
- 85. Запишите формулу для дисперсии непрерывной случайной величины.
- 86. Что такое среднее квадратическое отклонение? Какую размерность имеет эта величина?
- 87. Чему равно математическое ожидание среднего арифметического n независимых одинаково распределенных случайных величин?
- 88. Чему равна дисперсия среднего арифметического n независимых одинаково распределенных случайных величин?
- 89. Что называют начальным моментом k-го порядка случайной величины?
- 90. По какой формуле вычисляют начальный момент k-го порядка дискретной случайной величины?
- 91. Какой формулой определяется начальный момент k-го порядка непрерывной случайной величины?
- 92. Что называют центральным моментом k-го порядка случайной величины?
- 93. По какой формуле вычисляют центральный момент k-го порядка дискретной случайной величины?
- 94. Какой формулой определяется центральный момент k-го порядка непрерывной случайной величины?
- 95. Чему равны начальные моменты: нулевого порядка, первого порядка?
- 96. Чему равны центральные моменты: нулевого порядка, первого порядка, второго порядка?
- 97. Что характеризует коэффициент ассиметрии случайной величины?
- 98. Что характеризует эксцесс случайной величины?
- 99. Чему равен эксцесс случайной величины, распределенной по нормальному закону?
- 100. Что такое характеристическая функция?
- 101. Какова связь между характеристической функцией и плотностью распределения?
- 102. Что называют кумулянтной функцией?
- 103. Свойства характеристической функции (с доказательством).
- 104. Что такое двумерная случайная величина?
- 105. Какие другие названия используют для двумерной случайной величины?
- 106. Что такое закон распределения дискретной двумерной случайной величины?
- 107. В каком виде можно записать закон распределения дискретной двумерной случайной величины?
- 108. Как, зная закон распределения дискретной двумерной случайной величины, найти законы распределения составляющих?
- 109. Каким образом по таблице совместного распределения двух дискретных случайных величин можно вычислить математическое ожидание и дисперсию каждой из этих величин?
- 110. Что называют условным законом распределения дискретной случайной величины X при $Y = y_k$?
- 111. Как условный закон распределения связан с безусловным законом?
- 112. Как определяется функция распределения двумерной случайной величины?
- 113. Каковы свойства функции распределения двумерной случайной величины?

- 114. Как определяется плотность распределения двумерной случайной величины?
- 115. Как выражается функция распределения двумерной случайной величины через ее плотность распределения?
- 116. По каким формулам можно вычислить вероятность попадания значений двумерной случайной величины в заданный прямоугольник?
- 117. По какой формуле можно вычислить вероятность попадания значений двумерной случайной величины в заданную область?
- 118. Как определяется независимость двух случайных величин?
- 119. Как выражается необходимое условие независимости двух случайных величин? (с доказательством)
- 120. Что можно сказать о взаимной связи случайных величин X и Y, зная их числовые характеристики M[X], D[X], M[Y], D[Y]?
- 121. Что такое ковариация двух случайных величин?
- 122. Что называют коэффициентом корреляции?
- 123. Каковы свойства коэффициента корреляции ? (докажите их)
- 124. Какая связь существует между равенством нулю коэффициента корреляции и независимостью случайных величин?
- 125. Какими должны быть испытания, чтобы можно было применять формулу Бернулли?
- 126. Какой вид имеет формула Бернулли?
- 127. Как запишется закон распределения дискретной случайной величины количества появившихся гербов на двух новеньких монетах, случайно оброненных на пол?
- 128. Что называют наивероятнейшим числом появления события в n независимых испытаниях? Как находится это число?
- 129. Какой вид имеет формула, определяющая вероятность того, что в n независимых испытаниях событие A появится от k_1 до k_2 раз $(0 \le k \le n)$?
- 130. Как найти вероятность того, что в п независимых испытаниях событие А появится хотя бы один раз?
- 131. Как вычислить вероятность того, что в п независимых испытаниях событие А наступит а) менее k раз; б) более k раз; в) не менее k раз; г) не более k раз?
- 132. Какое распределение вероятностей называется биномиальным?
- 133. Чем объясняется слово «биномиальный» в названии распределения?
- 134. Чему равно математическое ожидание случайной величины, распределенной по биномиальному закону с параметрами n и p?
- 135. Чему равна дисперсия случайной величины, распределенной по биномиальному закону с параметрами п и р?
 - 136. Чему равно среднее квадратическое отклонение случайной величины, распределенной по биномиальному закону с параметрами n и p?
 - 137. Запишите биномиальный закон распределения вероятностей случайной величины в виде таблицы?
 - 138. Почему закон распределения Пуассона называют законом редких событий?
 - 139. При каких условиях можно применять закон распределения Пуассона?
 - 140. Получите формулу Пуассона.
 - 141. Запишите формулу Пуассона и объясните смысл каждого символа.
 - 142. Что является случайной величиной в законе распределения Пуассона?
 - 143. Каковы общие условия, необходимые для применимости закона распределения Пуассона и закона биномиального распределения?
 - 144. Как связаны между собой биномиальное распределение и распределение Пуассона?
 - 145. Чему равно математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона?
 - 146. Какая из величин в законе Пуассона больше: математическое ожидание или число независимых испытаний?
 - 147. Исследуется распределение Пуассона. Что вероятнее: событие А появится ровно один раз или не разу?

- 148. Какое распределение вероятностей называют равномерным на отрезке [a;b]?
- 149. Как записать плотность распределения случайной величины X, равномерно распределенной на отрезке [a;b]?
- 150. Какой вид имеет функция распределения F(x) случайной величины X, равномерно распределенной на отрезке [a;b]? (Вывести)
- 151. Чему равно математическое ожидание случайной величины X, равномерно распределенной на отрезке [a;b]? (Вывести)
- 152. Чему равна дисперсия случайной величины X, равномерно распределенной на отрезке [a;b]? (Вывести)
- 153. Чему равно среднее квадратическое отклонение случайной величины X, равномерно распределенной на отрезке [a;b]? (Вывести)
- 154. Случайная величина X равномерно распределена на отрезке [a;b]. Как найти вероятность попадания ее значений в интервал (c;d), принадлежащий данному отрезку?
- 155. Какое распределение двумерной случайной величины (X,Y) называется равномерным в данной области?
- 156. Какое распределение вероятностей случайной величины называют нормальным?
- 157. Каков вероятностный смысл параметра а, входящего в выражение плотности нормального распределения? (Вывести)
- 158. Каков вероятностный смысл параметра о, входящего в выражение плотности нормального распределения? (Вывести)
- 159. Как называется график плотности нормального распределения?
- 160. Как вычислить вероятность попадания значений нормальной случайной величины X в заданный интервал? (Вывести)
- 161. Как вычислить вероятность отклонения нормальной случайной величины от ее математического ожидания? (Вывести)
- 162. Сформулируйте правило трех сигм. (Вывести)
- 163. Какое распределение дискретной случайной величины называется геометрическим?
- 164. Чему равно математическое ожидание случайной величины X, имеющей геометрическое распределение?
- 165. Чему равна дисперсия случайной величины X, имеющей геометрическое распределение?
- 166. Чему равно среднее квадратическое отклонение случайной величины X, имеющей геометрическое распределение?
- 167. Как определяется показательное распределение случайной величины?
- 168. Какой вид имеет функция распределения для показательного закона? (Вывести)
- 169. Каково соотношение между математическим ожиданием и средним квадратическим отклонением случайной величины, имеющей показательное распределение? (Вывести)
- 170. Как найти вероятность попадания значений в заданный интервал (a; b) случайной величины X, имеющей показательное распределение?
- 171. Сформулируйте локальную теорему Лапласа (с пояснениями входящих в формулы символов)
- 172. Сформулируйте интегральную теорему Лапласа (с пояснениями входящих в формулы символов)
- 173. В каких случаях можно пользоваться приближенными формулами Лапласа?
- 174. По какой формуле вычисляется вероятность отклонения частоты события от его вероятности в независимых испытаниях?
- 175. Как определяется функция Лапласа? Каким свойством она обладает?

4. Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

 методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе согласно п.12 рабочей программы:

4.1. Основная литература

- 1. Магазинников Л.И. Высшая математика IV. Теория вероятностей: учебное пособие для вузов /
- Л. И. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2012. 151 с. https://edu.tusur.ru/publications/2248
- 2. Болотюк В.А. Практикум и индивидуальные задания по курсу теории вероятностей (типовые расчеты) : учебное пособие / В.А. Болотюк, Л.А. Болотюк, А.Г. Гринь [и др.] СПб.: Лань, 2010. 288 с. http://e.lanbook.com/books/element.php?pl1_id=534
- 3. Бородин, А.Н. Элементарный курс теории вероятностей и математической статистики: учебное пособие. СПб.: Лань, 2011. 255 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2026

4.2. Дополнительная литература

- 1. Магазинников Л.И.Математика для гуманитарных, экологических и экономико-юридических специальностей: учебное пособие / Л.И. Магазинников, Ю.П. Шевелев. Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007 **Ч. 2**. 244 с. Экземпляры всего: 101.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика: учебное пособие для бакалавров / В. Е. Гмурман. -12-е изд. М. : Юрайт, 2013. -480 с. (7 экз.)
- 3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для бакалавров / В. Е. Гмурман. 11-е изд., перераб. и доп.— М.: Юрайт, 2013.-405 с. (6 экз.)

4.3. Учебно-методические пособия

- 1. Болотюк В.А. Практикум и индивидуальные задания по курсу теории вероятностей (типовые расчеты): учебное пособие / В.А. Болотюк, Л.А. Болотюк, А.Г. Гринь [и др.].— СПб.: Лань, 2010. 288 с. http://e.lanbook.com/books/element.php?pl1_id=534
- 2. Магазинников Л.И. Высшая математика IV. Теория вероятностей: учебное пособие для вузов / Л. И. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2012. 151 с. https://edu.tusur.ru/publications/2248
- 3. Лабораторные работы по математике: Методические указания / Магазинников А. Л., Ерохина А.П. -2016. 25 с. https://edu.tusur.ru/publications/6081
- 4. Лабораторный практикум по математике: Руководство к выполнению лабораторных работ / Магазинников А. Л. -2016. 14 с. https://edu.tusur.ru/publications/6076

4.4. Программное обеспечение

Система дистанционного образования MOODLE для сопровождения самостоятельной работы студентов (методические материалы: текстовые, аудио и видеофайлы, индивидуальные задания, тестыит.д.); Mathcad; Advanced Grapher

4.5. Базы данных, информационно справочные и поисковые системы

- Ссылки с сайта кафедры на математические ресурсы и он-лайн тренажёры;
- Базы данных: http://lib.tusur.ru/category/bd/
- Научно-образовательный портал ТУСУРа: https://edu.tusur.ru/
- Электронно-библиотечная система «Лань», доступ по IP-адресам ТУСУРа, адрес для работы: http://e.lanbook.com/
- Поисковые системы Google, Yandex