Сайты ТУСУРа
Нажимая кнопку «СОГЛАСЕН», Вы подтверждаете то, что  Вы проинформированы об использовании cookies на нашем сайте. Отключить cookies Вы можете в  настройках своего браузера. Подробнее
Для того, чтобы мы могли качественно предоставить Вам услуги, мы используем cookies, которые сохраняются на Вашем компьютере (Сведения о местоположении; ip-адрес; тип, язык, версия ОС и браузера; тип устройства и разрешение его экрана; источник, откуда пришел на сайт пользователь; какие страницы открывает и на какие кнопки нажимает пользователь; эта же информация используется для обработки статистических данных использования сайта посредством интернет-сервиса Яндекс.Метрика)

Формирование структуры нечеткого классификатора комбинацией алгоритмов экстремумов классов и прыгающих лягушек для несбалансированных данных с двумя классами

Статья в журнале

Предложен способ применения метаэвристического алгоритма «прыгающих лягушек» в качестве инструмента для расширения первичной базы правил нечёткого классификатора. Такой алгоритм актуален в случае, когда имеющихся правил недостаточно для качественного распознавания всех классов, например при наличии дисбаланса в данных. Дополнительные правила, генерируемые метаэвристикой, способны не только улучшить качество классификации, но и предоставить более полное описание исследуемой предметной области. Для генерации первичной структуры классификатора был использован алгоритм, основанный на экстремальных значениях признаков классов. Исследуемая комбинация была проверена на 36 несбалансированных наборах данных из репозитория Knowledge Extraction based on Evolutionary Learning и показала увеличение средней геометрической точности на 34 наборах, а также удовлетворительные результаты по сравнению с аналогичными алгоритмами. Достоинства предложенного способа формирования структуры заключаются в отсутствии необходимости дополнения данных синтетическими образцами, низком разбросе результатов на отдельных запусках и возможности улучшить качество классификации при добавлении небольшого количества правил.

Журнал:

  • Автометрия
  • Сибирское отделение РАН (Новосибирск)

Библиографическая запись: Бардамова, М. Б. Формирование структуры нечеткого классификатора комбинацией алгоритмов экстремумов классов и прыгающих лягушек для несбалансированных данных с двумя классами: [Электронный ресурс] / М. Б. Бардамова, И. А. Ходашинский // Автометрия. – 2021. – №4 (57). – С. 54-64. – DOI: 10.15372/AUT20210407

Индексируется в:

Научный руководитель:  Ходашинский И. А.
Год издания:  2021
Страницы:  54 - 64
Язык:  Русский
DOI:  10.15372/AUT20210407