Сайты ТУСУРа
Нажимая кнопку «СОГЛАСЕН», Вы подтверждаете то, что  Вы проинформированы об использовании cookies на нашем сайте. Отключить cookies Вы можете в  настройках своего браузера. Подробнее
Для того, чтобы мы могли качественно предоставить Вам услуги, мы используем cookies, которые сохраняются на Вашем компьютере (Сведения о местоположении; ip-адрес; тип, язык, версия ОС и браузера; тип устройства и разрешение его экрана; источник, откуда пришел на сайт пользователь; какие страницы открывает и на какие кнопки нажимает пользователь; эта же информация используется для обработки статистических данных использования сайта посредством интернет-сервиса Яндекс.Метрика)

REPRESENTATION LEARNING FOR ELECTROENCEPHALOGRAM-BASED BIOMETRICS USING HOLO-HILBERT SPECTRAL ANALYSIS

Статья в журнале

In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.

Журнал:

  • Pattern Recognition and Image Analysis
  • Pleiades Publishing (New York City)
  • Индексируется в Scopus

Библиографическая запись: Svetlakov, M. Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis [Electronic resour / M. Svetlakov, I. Hodashinsky, K. Sarin // Pattern Recognition and Image Analysis. – 2022. – Vol. 32. – № 3. – P. 682-688. – DOI 10.1134/S1054661822030415

Индексируется в:

Год издания:  2022
Страницы:  682 - 688
Язык:  Русский
DOI:  10.1134/S1054661822030415